Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
4-Курс лекций-лекции 4-7.doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
4.17 Mб
Скачать
  1. Дайте определения противоположным, независимым, несовместным событиям. Приведите примеры таких событий.

  2. Что называется полной группой событий?

  3. Сформулируйте теоремы сложения и умножения вероятностей.

  4. Напишите формулу Бейеса.

  5. Вопросы для контроля знаний и подведения итога прочитанной лекции

Лекция 4. Дискретные и непрерывные случайные величины

1. Случайные величины

2. Математическое ожидание дискретной случайной величины

3. Дисперсия дискретной случайной величины

4. Непрерывные случайные величины

5. Некоторые законы распределения случайных величин

6. Закон больших чисел

7. Вопросы для контроля знаний и подведения итога прочитанной лекции

1. Случайные величины

1. Понятие «случайные величины».

Определение 1. Случайной величиной называют переменную величину, которая в зависимости от исхода испытания случайно принимает одно значение из множества возможных значений.

Пример 9.1. 1) Число очков, выпавших при однократном бросании игральной кости, есть случайная величина, она может принять одно из значений: 1, 2, 3, 4, 5, 6;

2) прирост массы домашнего животного за месяц есть случайная величина, которая может принять значение из некоторого числового промежутка;

3) число родившихся мальчиков среди пяти новорожденных есть случайная величина, которая может принять значения 0, 1, 2, 3, 4, 5.

Случайные величины будем обозначать прописными буквами X, Y, Z, а их возможные значения — соответствующими строчными буквами х, у, z. Например, если случайная величина X имеет три возможных значения, то они будут обозначены так: х1, х2 x3.

Определение 2.. Ниже рассматриваются дискретные случайные величины, множество допустимых значений которых конечно.

Случайные величины из примера 9.1, см. 1) и 3) дискретные.

Определение 3.

Случайная величина из примера 9.1, см. 2) является непрерывной.

Определение 4. Под суммой (произведением) случайных ве­личин X и У понимают случайную величину Z= Х+Y (Z= ХY), возможные значения которой состоят из сумм (произведений) каждого возможного значения величин Х и Y.

2. Законы распределения дискретных случайных величин. Рассмотрим дискретную случайную величину Х с конечным множеством возможных значений. Величина X считается заданной, если перечислены все ее возможные значения, а также вероятности, с которыми величина X может принять эти значения. Указанный перечень возможных значений и их вероятностей называют законом распределения дискретной случайной величины. Закон распределения дискретной случайной величины может быть задан с помощью таблицы:

X

х1

х2

x3

….

х n-1

х n

р

p1

p2

p3

….

p n-1

p n

В верхней строке выписывают возможные значения х12, ..., х n величины X, в нижней строке выписывают вероятности p1,p2, ..., pn значений х12, ..., хn. Читается таблица следующим образом: случайная величина X может принять значение хi- с вероятностью рi (i=1,2,...,n).

Так как в результате испытания величина X всегда примет одно из значений х12, ..., х n, то p1+p2+ ...+ pn=1

Пример 9.2. В денежной лотерее разыгрывается 1 выигрыш в 100000 р., 10 выигрышей по 10000 р. и 100 выигрышей по 100 р. при общем числе билетов 10000. Найти закон распределения случайного выигрыша Л" для владельца одного лотерейного билета.

Решение. Здесь возможные значения для X есть х1= 0, х2 = 100, x3 -= 10000, х4 = 100000. Вероятности их будут: р2 = 0,01, p3= 0,001, р4 = 0,0001, р1 = 1 - 0,01 -

-0,001 - 0,0001 = 0,9889. Следовательно, закон распределения выигрыша X может быть задан таблицей:

X

0

100

10000

100000

р

0,9889

0,01

0,001

0,0001

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]