- •Южно-Уральский государственный университет
- •Кафедра «Радиотехники»
- •Ю.Е. Калугин электротехника
- •Введение.
- •Тема 1. Основные определения и законы
- •Электрический ток, электрическое напряжение, эдс, электрическое сопротивление, законы Ома и Джоуля-Ленца
- •Элементы электрических цепей
- •1.3.Источники эдс и источники тока. Их эквивалентность
- •1.4.Электрические цепи и их классификации
- •Вопросы к теме
- •Тема 2. Анализ электрических цепей постоянного тока
- •2.1. Общие положения
- •2.2.Расчет сложной цепи постоянного тока
- •2.3. Последовательное и параллельное соединение сопротивлений
- •2.4. Метод контурных токов
- •2.5. Метод узловых потенциалов (напряжений)
- •2.6. Метод эквивалентного генератора
- •2.7. Электрическая энергия и работа. Мощность электрической цепи, баланс мощностей
- •Вопросы к теме
- •Тема 3. Анализ электрических цепей синусоидального тока.
- •3.1. Синусоидальные ток, напряжение, эдс
- •3.2.Векторные диаграммы
- •3.3. Цепи с последовательным соединением элементов r, l, c.
- •3.4. Параллельное соединение, резонанс токов
- •3.5. Общий случай расчета
- •3.6. Мощность в цепи гармонического тока
- •Избирательные цепи
- •3.7.1.Последовательный колебательный контур
- •3.7.2.Параллельный колебательный контур
- •3.7. Трехфазные линейные электрические цепи синусоидального тока
- •3.7.1 Трехфазный источник электрической энергии
- •3.6.2 Анализ электрических цепей при соединении трехфазного источника и приемника по схеме «звезда» с нулевым проводом
- •3.6.3 Соединение приемника по схеме «треугольник»
- •3.6. 4. Мощность трехфазной цепи
- •Тема 4.Четырехполюсники
- •4.1. Уравнения пассивного четырехполюсника
- •4.2. Режимы работы пассивных четырехполюсников
- •4.3. Передаточные функции и частотное исследование четырехполюсников
- •4.4. Электрические фильтры, основные понятия и определения
- •4.5. Цепи с распределенными параметрами
- •4.5.1.Уравнения однородной линии в стационарном режиме
- •Контрольные вопросы к теме
- •Тема 5. Отображение периодических не гармонических токов
- •5.1. Разложение периодической функции в ряд Фурье
- •5.2. Свойства периодических кривых, обладающих с имметрией
- •5.3.Действующее и среднее значение периодической несинусоидальной величины
- •5.4. Коэффициенты, оценивающие несинусоидальные функции
- •Контрольные вопросы к теме
- •Тема 6. Переходные процессы
- •6.1. Расчет переходных процессов классическим методом
- •6.1.1. Включение rL цепи на постоянное напряжение
- •Решение:
- •6.1.2. Законы коммутации
- •Закон коммутации на индуктивности
- •Закон коммутации на емкости
- •6.1.3. Включение rlc-цепи на постоянное напряжение Рассмотрим переходный процесс в цепи второго порядка на примере простейшей цепи (рис.6.3). Рис.6.3
- •7.1.4.Расчет переходных процессов в цепях с синусоидальными источниками классическим методом
- •6.1.5.Порядок анализа переходных процессов классическим методом
- •6.2. Операторный метод анализа переходных процессов Применение преобразования Лапласа к решению дифференциальных уравнений
- •7. Смещению изображения на комплексной плоскости на комплексное число соответствует умножение оригинала на (теорема смещения):
- •6.2.2.Уравнения электрического равновесия цепи в операторной форме
- •6.2.3. Операторные компонентные уравнения и схемы замещения идеализированных пассивных двухполюсников
- •1. Сопротивление
- •2. Емкость
- •3. Индуктивность
- •6.2.4.Порядок анализа переходных процессов операторным методом
- •6.4. Метод уравнений состояния
- •6.5. Переходная характеристика
- •Контрольные вопросы к теме
- •Тема 7. Магнитное поле. Магнитные цепи
- •7.1. Общие вопросы
- •7.2. Свойства ферромагнитных материалов. Гистерезис
- •7.3. Две задачи расчета неразветвленных магнитных цепей с постоянными мдс
- •7.4. Катушка с ферромагнитным сердечником при гармонической намагничивающей силе
- •7.5.Пульсирующее и вращающиеся магнитные поля
- •7.5.1.Магнитное поле катушки с синусоидальным током
- •7.5.2.Круговое вращающееся магнитное поле двух- и трехфазной обмоток
- •Вопросы к теме
- •Тема 8. Электрические машины
- •8.1. Электрические трансформаторы
- •8.1.1. Общие сведения
- •8.1.2. Принцип действия электрического трансформатора
- •8.1.3.Мощность потерь в трансформаторе, к.П.Д.
- •8.1.4. Автотрансформатор
- •8.2 Общие сведения об электрических машинах
- •8.2.1. Синхронная машина переменного тока
- •8.2.2. Асинхронный двигатель
- •8.3.Машины постоянного тока
- •8.3.1 Общие понятия об устройстве машин постоянного тока и принципе их действия
- •8.3.2 Эдс обмотки якоря и электромагнитный момент
- •8.3.5. Классификация машин постоянного тока
- •8.3.6 Электрические двигатели постоянного тока
- •Из основного уравнения двигателя
- •Вопросы к теме
Вопросы к теме
Что такое магнитное поле и магнитная цепь?
Каковы основные характеристики и законы магнитного поля?
Каковы свойства ферромагнитных материалов в постоянном и переменном магнитном поле?
В чем состоят и как реализуются прямая и обратная задачи расчета магнитной цепи при постоянном воздействии?
Знать какие процессы происходят в катушке с ферромагнитным сердечником при гармоническом воздействии. Как они отражаются в эквивалентной схеме?
Как возникает пульсирующее магнитное поле. Как его можно описать с помощью двух вращающихся?
Как возникает вращающееся круговое поле в системе двух катушек?
Как возникает вращающееся круговое поле в системе трех катушек? Каковы условия возникновения кругового вращающегося магнитного поля?
Тема 8. Электрические машины
8.1. Электрические трансформаторы
8.1.1. Общие сведения
Виды, устройство, конструкция, номинальные данные
Электрический трансформатор - электромагнитное устройство, преобразующее напряжение и ток одного уровня в напряжение и ток другого уровня при неизменной частоте и малой потере мощности.
Генераторы электрических станций вырабатывают электрическую энергию при напряжении 6, 10, 15 кВ, так как на более высокие напряжения конструировать электрогенераторы сложно в связи с трудностью обеспечить хорошую изоляцию обмоток.
В то же время в линиях электропередачи применяют напряжения до 110, 220, 400, 500 кВ и более, чтобы уменьшить силу тока в линии, а значит и сечение проводов, что позволяет резко снизить мощность потерь и стоимость линий электропередач.
Таким образом, необходимы повышающие трансформаторы, увеличивающие напряжение генераторов электрических станций до напряжения линий электропередач. В местах же потребления электрической энергии, на производстве, в быту и так далее необходимы понижающие трансформаторы, чтобы иметь напряжения 380, 220, 127 В и менее.
Силовые трансфоматоры существую в трехфазном или однофазном исполнении.
Силовые трансформаторы менее одного кВА выполняют с воздушным охлаждением, выше – с масляным.
По конструкции магнитоповода: с броневым или со стержневым
Существуют специальные измерительные, радиотехнические и др.
Электрические трансформаторы имеют высокий коэффициент полезного действия, доходящий до 99 % и высокую надежность, так как не содержат движущихся частей.
Изобрел электрический трансформатор в 1876 году П.Н. Яблочков.
В 1891 году М.О. Доливо-Добровольским была разработана конструкция первого трехфазного электрического трансформатора.
В дальнейшем трансформаторы стали использоваться повсеместно. Они применяются в измерительной технике: трансформатор тока и трансформатор напряжения, в радиотехнике: трансформаторы развязки, согласования и др., в автоматике и во многих др. отраслях.
Простейший однофазный электрический трансформатор (рис.8.1) состоит из двух обмоток, размещенных на ферромагнитном магнитопроводе, который набран из изолированных друг от друга листов электротехнической стали толщиной 0.3-0.5 мм, с целью уменьшения потерь на вихревые токи (потерь в стали) Pс.
Обмотка, подключаемая к источнику электрической энергии (генератору) или к линии электропередач (электрической сети) называется первичной (входной). Обмотка, к которой подключается приемник электрической энергии - вторичной (выходной).
На щитке электрического трансформатора указываются: высшее и низшее номинальные напряжения; номинальная полная мощность S = U1НI1Н, ВА или кВА; частота f (Гц); токи в первичной и вторичной (I1Н,I2 н) обмотках при номинальной мощности; коэффициент трансформации К; число фаз; схема соединений обмоток (звездой или треугольником) в случае трехфазного электрического трансформатора; режим работы (длительный или кратковременный); способ охлаждения (масляный, воздушный).
Крупный силовой трансформатор обязательно имеет масляное охлаждение, поэтому вся активная часть располагается в баке, который имеет масляный расширитель (для сезонного регулирования масла и для связи с атмосферой), радиаторы охлаждения, высоковольтные и низковольтные проходные изоляторы для соединения с внешними устройствами
Ф0
Рис. 8.1. Схема электрической цепи с трансформатором.
