- •Южно-Уральский государственный университет
- •Кафедра «Радиотехники»
- •Ю.Е. Калугин электротехника
- •Введение.
- •Тема 1. Основные определения и законы
- •Электрический ток, электрическое напряжение, эдс, электрическое сопротивление, законы Ома и Джоуля-Ленца
- •Элементы электрических цепей
- •1.3.Источники эдс и источники тока. Их эквивалентность
- •1.4.Электрические цепи и их классификации
- •Вопросы к теме
- •Тема 2. Анализ электрических цепей постоянного тока
- •2.1. Общие положения
- •2.2.Расчет сложной цепи постоянного тока
- •2.3. Последовательное и параллельное соединение сопротивлений
- •2.4. Метод контурных токов
- •2.5. Метод узловых потенциалов (напряжений)
- •2.6. Метод эквивалентного генератора
- •2.7. Электрическая энергия и работа. Мощность электрической цепи, баланс мощностей
- •Вопросы к теме
- •Тема 3. Анализ электрических цепей синусоидального тока.
- •3.1. Синусоидальные ток, напряжение, эдс
- •3.2.Векторные диаграммы
- •3.3. Цепи с последовательным соединением элементов r, l, c.
- •3.4. Параллельное соединение, резонанс токов
- •3.5. Общий случай расчета
- •3.6. Мощность в цепи гармонического тока
- •Избирательные цепи
- •3.7.1.Последовательный колебательный контур
- •3.7.2.Параллельный колебательный контур
- •3.7. Трехфазные линейные электрические цепи синусоидального тока
- •3.7.1 Трехфазный источник электрической энергии
- •3.6.2 Анализ электрических цепей при соединении трехфазного источника и приемника по схеме «звезда» с нулевым проводом
- •3.6.3 Соединение приемника по схеме «треугольник»
- •3.6. 4. Мощность трехфазной цепи
- •Тема 4.Четырехполюсники
- •4.1. Уравнения пассивного четырехполюсника
- •4.2. Режимы работы пассивных четырехполюсников
- •4.3. Передаточные функции и частотное исследование четырехполюсников
- •4.4. Электрические фильтры, основные понятия и определения
- •4.5. Цепи с распределенными параметрами
- •4.5.1.Уравнения однородной линии в стационарном режиме
- •Контрольные вопросы к теме
- •Тема 5. Отображение периодических не гармонических токов
- •5.1. Разложение периодической функции в ряд Фурье
- •5.2. Свойства периодических кривых, обладающих с имметрией
- •5.3.Действующее и среднее значение периодической несинусоидальной величины
- •5.4. Коэффициенты, оценивающие несинусоидальные функции
- •Контрольные вопросы к теме
- •Тема 6. Переходные процессы
- •6.1. Расчет переходных процессов классическим методом
- •6.1.1. Включение rL цепи на постоянное напряжение
- •Решение:
- •6.1.2. Законы коммутации
- •Закон коммутации на индуктивности
- •Закон коммутации на емкости
- •6.1.3. Включение rlc-цепи на постоянное напряжение Рассмотрим переходный процесс в цепи второго порядка на примере простейшей цепи (рис.6.3). Рис.6.3
- •7.1.4.Расчет переходных процессов в цепях с синусоидальными источниками классическим методом
- •6.1.5.Порядок анализа переходных процессов классическим методом
- •6.2. Операторный метод анализа переходных процессов Применение преобразования Лапласа к решению дифференциальных уравнений
- •7. Смещению изображения на комплексной плоскости на комплексное число соответствует умножение оригинала на (теорема смещения):
- •6.2.2.Уравнения электрического равновесия цепи в операторной форме
- •6.2.3. Операторные компонентные уравнения и схемы замещения идеализированных пассивных двухполюсников
- •1. Сопротивление
- •2. Емкость
- •3. Индуктивность
- •6.2.4.Порядок анализа переходных процессов операторным методом
- •6.4. Метод уравнений состояния
- •6.5. Переходная характеристика
- •Контрольные вопросы к теме
- •Тема 7. Магнитное поле. Магнитные цепи
- •7.1. Общие вопросы
- •7.2. Свойства ферромагнитных материалов. Гистерезис
- •7.3. Две задачи расчета неразветвленных магнитных цепей с постоянными мдс
- •7.4. Катушка с ферромагнитным сердечником при гармонической намагничивающей силе
- •7.5.Пульсирующее и вращающиеся магнитные поля
- •7.5.1.Магнитное поле катушки с синусоидальным током
- •7.5.2.Круговое вращающееся магнитное поле двух- и трехфазной обмоток
- •Вопросы к теме
- •Тема 8. Электрические машины
- •8.1. Электрические трансформаторы
- •8.1.1. Общие сведения
- •8.1.2. Принцип действия электрического трансформатора
- •8.1.3.Мощность потерь в трансформаторе, к.П.Д.
- •8.1.4. Автотрансформатор
- •8.2 Общие сведения об электрических машинах
- •8.2.1. Синхронная машина переменного тока
- •8.2.2. Асинхронный двигатель
- •8.3.Машины постоянного тока
- •8.3.1 Общие понятия об устройстве машин постоянного тока и принципе их действия
- •8.3.2 Эдс обмотки якоря и электромагнитный момент
- •8.3.5. Классификация машин постоянного тока
- •8.3.6 Электрические двигатели постоянного тока
- •Из основного уравнения двигателя
- •Вопросы к теме
Контрольные вопросы к теме
Что называют четырехполюсником, виды, параметры связи?
Режимы работы: х.х, к.з., согласованный режим, связь между параметрами.
Что такое передаточная функция четырехполюсника, частотные характеристиви?
Что такое электрический фильтр и какие они бывают?
В чем заключается разница между цепями с сосредоточенными и распределенными параметрами?
По какому критерию цепь относят к классу цепей с распределенными или сосредоточенными параметрами?
Первичные и вторичные параметры, фазовая скорость.
Объясните понятия прямой и обратной бегущих волн.
Что такое согласованный режим работы цепи с распределенными параметрами, чем он характеризуется?
Тема 5. Отображение периодических не гармонических токов
5.1. Разложение периодической функции в ряд Фурье
Из
математики известно, что всякая
периодическая функция
,
где Т – период, удовлетворяющая условиям
Дирихле, может быть разложена в
тригонометрический ряд. Можно отметить,
что функции, рассматриваемые в
электротехнике, этим условиям
удовлетворяют, в связи с чем проверку
на их выполнение проводить не нужно.
При разложении в ряд Фурье функция представляется следующим образом:
|
(1) |
З
-
постоянная составляющая или нулевая
гармоника;
-
первая (основная) гармоника, изменяющаяся
с угловой частотой
,
где Т – период несинусоидальной
периодической функции.
В
выражении (1)
,
где коэффициенты
и
определяются
по формулам
;
5.2. Свойства периодических кривых, обладающих с имметрией
Коэффициенты ряда Фурье для стандартных функций могут быть взяты из справочной литературы или в общем случае рассчитаны по приведенным выше формулам. Однако в случае кривых, обладающих симметрией, задача существенно упрощается, поскольку из их разложения выпадают целые спектры
Рис. 5.1
гармоник. Знание свойств таких кривых позволяет существенно сэкономить время и ресурсы при вычислениях.
Нечетная симметрия: кривые, симметричные относительно оси абсцисс (Рис. 5.1).
Рис.5.2 Рис. 5.3
К
данному типу относятся кривые,
удовлетворяющие равенству
.
В их разложении отсутствуют постоянная
составляющая и четные гармоники, т.е.
.
Четная симметрия: кривые, симметричные относительно оси ординат.
К
данному типу относятся кривые, для
которых выполняется равенство
(
рис.5.2). В их разложении отсутствуют
синусные составляющие, т.е.
.
Косая симметрия: кривые, симметричные относительно начала координат.
К
этому типу относятся кривые, удовлетворяющие
равенству
(рис.5.3). При разложении таких кривых
отсутствуют постоянная и косинусные
составляющие, т.е.
.
5.3.Действующее и среднее значение периодической несинусоидальной величины
Как было показано выше, действующим называется среднеквадратичное за период значение величины:
.
При наличии аналитического выражения функции i(t) и возможности взятия интеграла от ее квадрата действующее значение i(t) определяется точно. Однако в общем случае на практике действующее значение переменной определяется на основе информации о действующих значениях конечного ряда гармонических.
Пусть
.
Тогда
Очевидно, что каждый из интегралов от тригонометрических функций в последнем выражении равен нулю. Таким образом,
или
.
Действующим значением периодической функции называется квадратный корень из суммы квадратов удерживаемых гармоник ряда Фурье.
Аналогичные выражения имеют место для ЭДС, напряжения и т.д.
Среднее значение вычисляется:
ИЛИ
Средним значением периодического несинусоидального тока называют сумму средних значений гармоник ряда Фурье данной функции.

.