- •Южно-Уральский государственный университет
- •Кафедра «Радиотехники»
- •Ю.Е. Калугин электротехника
- •Введение.
- •Тема 1. Основные определения и законы
- •Электрический ток, электрическое напряжение, эдс, электрическое сопротивление, законы Ома и Джоуля-Ленца
- •Элементы электрических цепей
- •1.3.Источники эдс и источники тока. Их эквивалентность
- •1.4.Электрические цепи и их классификации
- •Вопросы к теме
- •Тема 2. Анализ электрических цепей постоянного тока
- •2.1. Общие положения
- •2.2.Расчет сложной цепи постоянного тока
- •2.3. Последовательное и параллельное соединение сопротивлений
- •2.4. Метод контурных токов
- •2.5. Метод узловых потенциалов (напряжений)
- •2.6. Метод эквивалентного генератора
- •2.7. Электрическая энергия и работа. Мощность электрической цепи, баланс мощностей
- •Вопросы к теме
- •Тема 3. Анализ электрических цепей синусоидального тока.
- •3.1. Синусоидальные ток, напряжение, эдс
- •3.2.Векторные диаграммы
- •3.3. Цепи с последовательным соединением элементов r, l, c.
- •3.4. Параллельное соединение, резонанс токов
- •3.5. Общий случай расчета
- •3.6. Мощность в цепи гармонического тока
- •Избирательные цепи
- •3.7.1.Последовательный колебательный контур
- •3.7.2.Параллельный колебательный контур
- •3.7. Трехфазные линейные электрические цепи синусоидального тока
- •3.7.1 Трехфазный источник электрической энергии
- •3.6.2 Анализ электрических цепей при соединении трехфазного источника и приемника по схеме «звезда» с нулевым проводом
- •3.6.3 Соединение приемника по схеме «треугольник»
- •3.6. 4. Мощность трехфазной цепи
- •Тема 4.Четырехполюсники
- •4.1. Уравнения пассивного четырехполюсника
- •4.2. Режимы работы пассивных четырехполюсников
- •4.3. Передаточные функции и частотное исследование четырехполюсников
- •4.4. Электрические фильтры, основные понятия и определения
- •4.5. Цепи с распределенными параметрами
- •4.5.1.Уравнения однородной линии в стационарном режиме
- •Контрольные вопросы к теме
- •Тема 5. Отображение периодических не гармонических токов
- •5.1. Разложение периодической функции в ряд Фурье
- •5.2. Свойства периодических кривых, обладающих с имметрией
- •5.3.Действующее и среднее значение периодической несинусоидальной величины
- •5.4. Коэффициенты, оценивающие несинусоидальные функции
- •Контрольные вопросы к теме
- •Тема 6. Переходные процессы
- •6.1. Расчет переходных процессов классическим методом
- •6.1.1. Включение rL цепи на постоянное напряжение
- •Решение:
- •6.1.2. Законы коммутации
- •Закон коммутации на индуктивности
- •Закон коммутации на емкости
- •6.1.3. Включение rlc-цепи на постоянное напряжение Рассмотрим переходный процесс в цепи второго порядка на примере простейшей цепи (рис.6.3). Рис.6.3
- •7.1.4.Расчет переходных процессов в цепях с синусоидальными источниками классическим методом
- •6.1.5.Порядок анализа переходных процессов классическим методом
- •6.2. Операторный метод анализа переходных процессов Применение преобразования Лапласа к решению дифференциальных уравнений
- •7. Смещению изображения на комплексной плоскости на комплексное число соответствует умножение оригинала на (теорема смещения):
- •6.2.2.Уравнения электрического равновесия цепи в операторной форме
- •6.2.3. Операторные компонентные уравнения и схемы замещения идеализированных пассивных двухполюсников
- •1. Сопротивление
- •2. Емкость
- •3. Индуктивность
- •6.2.4.Порядок анализа переходных процессов операторным методом
- •6.4. Метод уравнений состояния
- •6.5. Переходная характеристика
- •Контрольные вопросы к теме
- •Тема 7. Магнитное поле. Магнитные цепи
- •7.1. Общие вопросы
- •7.2. Свойства ферромагнитных материалов. Гистерезис
- •7.3. Две задачи расчета неразветвленных магнитных цепей с постоянными мдс
- •7.4. Катушка с ферромагнитным сердечником при гармонической намагничивающей силе
- •7.5.Пульсирующее и вращающиеся магнитные поля
- •7.5.1.Магнитное поле катушки с синусоидальным током
- •7.5.2.Круговое вращающееся магнитное поле двух- и трехфазной обмоток
- •Вопросы к теме
- •Тема 8. Электрические машины
- •8.1. Электрические трансформаторы
- •8.1.1. Общие сведения
- •8.1.2. Принцип действия электрического трансформатора
- •8.1.3.Мощность потерь в трансформаторе, к.П.Д.
- •8.1.4. Автотрансформатор
- •8.2 Общие сведения об электрических машинах
- •8.2.1. Синхронная машина переменного тока
- •8.2.2. Асинхронный двигатель
- •8.3.Машины постоянного тока
- •8.3.1 Общие понятия об устройстве машин постоянного тока и принципе их действия
- •8.3.2 Эдс обмотки якоря и электромагнитный момент
- •8.3.5. Классификация машин постоянного тока
- •8.3.6 Электрические двигатели постоянного тока
- •Из основного уравнения двигателя
- •Вопросы к теме
3.6.2 Анализ электрических цепей при соединении трехфазного источника и приемника по схеме «звезда» с нулевым проводом
Свойства четырех и трехпроводной трехфазной цепи при соединении в звезду
У источника энергии, выполненного по схеме «звезда» концы фазных обмоток X, Y, Z генератора соединяются в общий узел в N (рис.3.20). Кроме того на рис. приведено соединение фаз генератора в звезду.
A а
iA ia0
ЕА Za
0 Y i0
X Z 0҆`
EB EC
С В Zc Zb
iC ic0 ib0
iB с b
Рис. 3.20
Аналогичный узел образует соединение концов z,y,x трех фаз приемника, который соединяется нейтральным проводом с точкой 0, в результате чего потенциалы этих точек равны.
Остальные три провода, соединяющие выводы генератора С,В,А с выводами приемника называются линейными (с,b,а).
Таким образом, вместо шести проводов (в случае раздельного питания фаз приемника однофазными источниками) трехфазная система, выполненная по схеме «звезда» с нулевым проводом содержит четыре провода. Следовательно, трехфазная электрическая цепь обеспечивает передачу электрической энергии с меньшими потерями и с меньшим расходом материала проводов при передаче одинаковой мощности. В этом следующее преимущество трехфазных электрических цепей перед однофазными.
Кроме этого свойства симметричная трехфазная система, соединенная в звезду обладает еще рядом свойств.
Очевидно, что в схеме (рис. 3.13) линейные токи являются одновременно и фазными, так как они протекают одновременно в фазах источника и приемника и в соединяющих их проводах (линиях), то есть iA = iа0 , iB = ib0 , iC = iс0
Приемник с одинаковыми сопротивлениями всех трех фаз называется (Za = Zb = Zc = Z) симметричным. Он и приводит всю систему к симметрии и действующие значения линейных токов и токов всех фаз приемника равны. Обозначим их IA, IB, IC
Равны также сдвиги фаз этих токов относительно соответствующих фазных напряжений.
Таким образом, токи представляют симметричную систему токов, в связи с чем их векторная сумма равна нулю. Ток в нейтральном проводе связан с линейными токами законом Кирхгофа
iA + iB + iC = i0 (1)
и поэтому ток в нейтральном проводе также равен нулю.
Векторная диаграмма напряжений и токов при активно-индуктивном характере симметричного приемника (ток отстает от напряжение по фазе на угол φ) изображена на рис.3.21,а. Векторная диаграмма напряжений на рис.3.21,б повторяет векторную диаграмму напряжений источника электрической энергии (рис.3.19,б),
U
AB
IA
UA0
IA
IC
I0
IC φ
φ φ UB0 IB
UCA UC0
а IB UBC б
Рис. 3.21
т.к. система фазных и линейных напряжений в рассматриваемой электрической цепи задается источником и не зависит от нагрузки. В этом достоинство электрической цепи с нулевым проводом.
Из векторной диаграммы следует, что при симметричном приемнике, соединенном в «звезду», и при наличии нулевого (нейтрального) провода, симметричной системе напряжений соответствует симметричная система токов
Однако, если приемник несимметричный, токи в схеме (рис.3.20) не будут представлять симметричную систему и в нулевом проводе в соответствии с (1) появится ток. На рис.3.21,б приведена векторная диаграмма токов для случая несимметричного приемника.
