- •Южно-Уральский государственный университет
- •Кафедра «Радиотехники»
- •Ю.Е. Калугин электротехника
- •Введение.
- •Тема 1. Основные определения и законы
- •Электрический ток, электрическое напряжение, эдс, электрическое сопротивление, законы Ома и Джоуля-Ленца
- •Элементы электрических цепей
- •1.3.Источники эдс и источники тока. Их эквивалентность
- •1.4.Электрические цепи и их классификации
- •Вопросы к теме
- •Тема 2. Анализ электрических цепей постоянного тока
- •2.1. Общие положения
- •2.2.Расчет сложной цепи постоянного тока
- •2.3. Последовательное и параллельное соединение сопротивлений
- •2.4. Метод контурных токов
- •2.5. Метод узловых потенциалов (напряжений)
- •2.6. Метод эквивалентного генератора
- •2.7. Электрическая энергия и работа. Мощность электрической цепи, баланс мощностей
- •Вопросы к теме
- •Тема 3. Анализ электрических цепей синусоидального тока.
- •3.1. Синусоидальные ток, напряжение, эдс
- •3.2.Векторные диаграммы
- •3.3. Цепи с последовательным соединением элементов r, l, c.
- •3.4. Параллельное соединение, резонанс токов
- •3.5. Общий случай расчета
- •3.6. Мощность в цепи гармонического тока
- •Избирательные цепи
- •3.7.1.Последовательный колебательный контур
- •3.7.2.Параллельный колебательный контур
- •3.7. Трехфазные линейные электрические цепи синусоидального тока
- •3.7.1 Трехфазный источник электрической энергии
- •3.6.2 Анализ электрических цепей при соединении трехфазного источника и приемника по схеме «звезда» с нулевым проводом
- •3.6.3 Соединение приемника по схеме «треугольник»
- •3.6. 4. Мощность трехфазной цепи
- •Тема 4.Четырехполюсники
- •4.1. Уравнения пассивного четырехполюсника
- •4.2. Режимы работы пассивных четырехполюсников
- •4.3. Передаточные функции и частотное исследование четырехполюсников
- •4.4. Электрические фильтры, основные понятия и определения
- •4.5. Цепи с распределенными параметрами
- •4.5.1.Уравнения однородной линии в стационарном режиме
- •Контрольные вопросы к теме
- •Тема 5. Отображение периодических не гармонических токов
- •5.1. Разложение периодической функции в ряд Фурье
- •5.2. Свойства периодических кривых, обладающих с имметрией
- •5.3.Действующее и среднее значение периодической несинусоидальной величины
- •5.4. Коэффициенты, оценивающие несинусоидальные функции
- •Контрольные вопросы к теме
- •Тема 6. Переходные процессы
- •6.1. Расчет переходных процессов классическим методом
- •6.1.1. Включение rL цепи на постоянное напряжение
- •Решение:
- •6.1.2. Законы коммутации
- •Закон коммутации на индуктивности
- •Закон коммутации на емкости
- •6.1.3. Включение rlc-цепи на постоянное напряжение Рассмотрим переходный процесс в цепи второго порядка на примере простейшей цепи (рис.6.3). Рис.6.3
- •7.1.4.Расчет переходных процессов в цепях с синусоидальными источниками классическим методом
- •6.1.5.Порядок анализа переходных процессов классическим методом
- •6.2. Операторный метод анализа переходных процессов Применение преобразования Лапласа к решению дифференциальных уравнений
- •7. Смещению изображения на комплексной плоскости на комплексное число соответствует умножение оригинала на (теорема смещения):
- •6.2.2.Уравнения электрического равновесия цепи в операторной форме
- •6.2.3. Операторные компонентные уравнения и схемы замещения идеализированных пассивных двухполюсников
- •1. Сопротивление
- •2. Емкость
- •3. Индуктивность
- •6.2.4.Порядок анализа переходных процессов операторным методом
- •6.4. Метод уравнений состояния
- •6.5. Переходная характеристика
- •Контрольные вопросы к теме
- •Тема 7. Магнитное поле. Магнитные цепи
- •7.1. Общие вопросы
- •7.2. Свойства ферромагнитных материалов. Гистерезис
- •7.3. Две задачи расчета неразветвленных магнитных цепей с постоянными мдс
- •7.4. Катушка с ферромагнитным сердечником при гармонической намагничивающей силе
- •7.5.Пульсирующее и вращающиеся магнитные поля
- •7.5.1.Магнитное поле катушки с синусоидальным током
- •7.5.2.Круговое вращающееся магнитное поле двух- и трехфазной обмоток
- •Вопросы к теме
- •Тема 8. Электрические машины
- •8.1. Электрические трансформаторы
- •8.1.1. Общие сведения
- •8.1.2. Принцип действия электрического трансформатора
- •8.1.3.Мощность потерь в трансформаторе, к.П.Д.
- •8.1.4. Автотрансформатор
- •8.2 Общие сведения об электрических машинах
- •8.2.1. Синхронная машина переменного тока
- •8.2.2. Асинхронный двигатель
- •8.3.Машины постоянного тока
- •8.3.1 Общие понятия об устройстве машин постоянного тока и принципе их действия
- •8.3.2 Эдс обмотки якоря и электромагнитный момент
- •8.3.5. Классификация машин постоянного тока
- •8.3.6 Электрические двигатели постоянного тока
- •Из основного уравнения двигателя
- •Вопросы к теме
Избирательные цепи
3.7.1.Последовательный колебательный контур
П
оследовательный
колебательный контур является простейшей
резонансной (колебательной) цепью.
Состоит последовательный колебательный
контур, из последовательно включенных
катушки индуктивности и конденсатора
(рис.3.12).
Рис. 3.12
При воздействии на такую цепь переменного (гармонического) напряжения, через катушку и конденсатор будет протекать переменный ток, величина которого вычисляется по закону Ома:
I = U / ХΣ ,
где ХΣ - сумма реактивных сопротивлений последовательно включенных катушки
и конденсатора
На рис. 3.13 графически представлены зависимости реактивных сопротивлений катушки XL и конденсатора ХC от циклической (круговой) частоты ω, а также график зависимости от частоты ω их алгебраической суммы ХΣ. График, по сути, показывает зависимость от частоты общего реактивного сопротивления последовательного колебательного контура.
И
з
графика видно, что на некоторой частоте
ω=ωр
, на которой реактивные сопротивления
катушки и конденсатора равны по модулю
(равны по значению, но противоположны
по знаку), общее сопротивление цепи
обращается в ноль. На этой частоте в
цепи наблюдается максимум тока, который
ограничен только омическими потерями
в катушке индуктивности (т.е. активным
сопротивлением провода обмотки катушки)
и внутренним сопротивлением источника
тока (генератора). Такую частоту, при
которой наблюдается рассмотренное
явление,
Рис.3.13
называемое в физике резонансом, называют резонансной частотой или собственной частотой колебаний цепи. Также из графика видно, что на частотах, ниже частоты резонанса реактивное сопротивление последовательного колебательного контура носит емкостной характер, а на более высоких частотах - индуктивный. Что касается самой резонансной частоты, то она может быть вычислена при помощи формулы Томсона, которую мы можем вывести из формул реактивных сопротивлений катушки индуктивности и конденсатора, приравняв их реактивные сопротивления друг к другу:
На рисунке справа, изображена эквивалентная схема последовательного резонансного контура с учетом омических потерь R, подключенного к идеальному генератору гармонического напряжения с амплитудой U. Полное сопротивление (импеданс) такой цепи определяется: Z = √(R2+XΣ2), где XΣ = ω L-1/ωC. На резонансной частоте, когда величины реактивных сопротивлений катушки XL = ωL и конденсатора ХС= 1/ωС равны по модулю, величина XΣ обращается в нуль (следовательно, сопротивление цепи чисто активное), а ток в цепи определятся отношением амплитуды напряжения генератора к сопротивлению омических потерь: I= U/R. При этом на катушке и на конденсаторе, в которых запасена реактивная электрическая энергия, падает одинаковое напряжение UL = UС = IXL = IXС. На любой другой частоте, отличной от резонансной, напряжения на катушке и конденсаторе неодинаковы - они определяются амплитудой тока в цепи и величинами модулей реактивных сопротивлений XL и XС.Поэтому резонанс в последовательном колебательном контуре принято называть резонансом напряжений. Резонансной частотой контура называют такую частоту, на которой сопротивление контура имеет чисто активный (резистивный) характер.
Условие резонанса - это равенство величин реактивных сопротивлений катушки индуктивности и ёмкости.
Одними из наиболее важных параметров колебательного контура (кроме, разумеется, резонансной частоты) являются его характеристическое (или волновое) сопротивление ρ и добротность контура Q. Характеристическим (волновым) сопротивлением контура ρ называется величина реактивного сопротивления емкости и индуктивности контура на резонансной частоте: ρ = ХL = ХC при ω =ωр . Характеристическое сопротивление может быть вычислено следующим образом: ρ = √(L/C). Характеристическое сопротивление ρ является количественной мерой оценки энергии, запасенной реактивными элементами контура - катушкой (энергия магнитного поля) WL = (LI2)/2 и конденсатором (энергия электрического поля) WC=(CU2)/2. Отношение энергии, запасенной реактивными элементами контура, к энергии омических (резистивных) потерь за период принято называть добротностью Q контура, что в буквальном переводе с английского языка обозначает "качество". Добротность колебательного контура - характеристика, определяющая амплитуду и ширину АЧХ резонанса и показывающая, во сколько раз запасы энергии в контуре больше, чем потери энергии за один период колебаний. Добротность учитывает наличие активного сопротивления нагрузки R. Для последовательного колебательного контура в RLC цепях, в котором все три элемента включены последовательно, добротность вычисляется:
где R, L и C — сопротивление, индуктивность и ёмкость резонансной цепи, соответственно. Величину, обратную добротности d = 1 / Q называют затуханием контура. Для определения добротности обычно пользуются формулой Q = ρ / R, где R-сопротивление омических потерь контура, характеризующее мощность резистивных (активных потерь) контура Р = I2R. Добротность реальных колебательных контуров, выполненных на дискретных катушках индуктивности и конденсаторах, составляет от нескольких единиц до сотни и более. Добротность различных колебательных систем, построенных на принципе пьезоэлектрических и других эффектов (например, кварцевые резонаторы) может достигать нескольких тысяч и более.
Частотные свойства различных цепей в технике принято оценивать с помощью амплитудно-частотных характеристик (АЧХ), при этом сами цепи рассматривают как четырёхполюсники. На рис.3.14, 3.15 представлены два простейших четырехполюсника, содержащих последовательный колебательный контур и АЧХ этих цепей, которые приведены (показаны сплошными линями). По вертикальной оси графиков АЧХ отложена величина коэффициента передачи цепи по напряжению К, показывающая отношение выходного напряжения цепи к входному.
Для пассивных цепей (т.е. не содержащих усилительных элементов и источников энергии), величина К никогда не превышает единицу. Сопротивление переменному току изображённой на рисунке цепи, будет минимально при частоте воздействия, равной резонансной частоте контура. В этом случае коэффициент передачи цепи близок к единице (определяется омическими потерями в контуре).
П
0,707
а
б
Рис.3.14
Еще одной важной характеристикой является полоса пропускания – область частот вблизи резонанса, в которой коэффициент передачи К≤0,707 (рис. 3.14,б)
Величина полосы пропускания
П = ωр/Q .
На частотах, сильно отличающихся от резонансной, сопротивление контура переменному току достаточно велико, а следовательно, и коэффициент передачи цепи будет падать практически до нуля.
Рис.3.15
