
- •Основы экологии и природопользования
- •Содержание:
- •Часть I. Общая экология
- •Глава 1. Вид как основной таксон и существеннейший этап филогенеза 62
- •Глава 2. Учение о популяции 77
- •Глава 3. Организм и факторы среды 116
- •Глава 4. Экосистемы. Функционирование, история возникновения и
- •Глава 5. Учение о биосфере 248
- •6.2. Сохранение генофонда планеты.
- •Экологический кризис и роль науки в его преодолении
- •9.2. Экологическая этика и экологический гуманизм 316
- •Часть III экологические основы рационального природопользования
- •Глава 10. Пути и принципы рационального использования
- •10.4. Экологические основы рационального
- •10.5. Общие принципы экологоориентированного регулирования
- •10.6. Экономическое регулирование использования природных ресурсов
- •Глава 11. Формирование нового экологического мировоззрения человека в целях обеспечения рационального использования природных ресурсов 354
- •11.1. Основные составляющие экологического
- •11.2. Роль экологического образования и воспитания в
- •Глава 12. Особенности устойчивого развития горных территорий.
- •12.1. Состояние природной среды и тенденции
- •12.2. Формирование энерго–экологических механизмов управления в
- •12.6. Особенности решения социально–экологических проблем в горных территориях с малочисленными народами (локальные сценарии) 399
- •Человечество уже вышло за пределы самоподдерживания земли. Каковы наши стартовые позиции?
- •Распределение субъектов Федерации по изменению ожидаемой
- •Распределение регионов по разности коэффициентов
- •Распределение регионов по изменению уровня безработицы,
- •Численность школьников по Северо–Кавказскому федеральному округу
- •Денежные доходы населения по Северо–Кавказскому Федеральному Округу
- •Величина прожиточного минимума, установленная
- •Индексы производства по отдельным видам экономической деятельности
- •Индексы физического объема инвестиций в основной капитал по Северо–Кавказскому Федеральному Округу Российской Федерации
- •Распределение численности занятых по видам экономической деятельности
- •Численности занятых в экономике России, %
- •Число преступлений, сопряженных с насильственными действиями в отношении потерпевших по Северо–Кавказскому федеральному округу
- •Экологическое состояние и здоровье населения северо-кавказского федерального округа
- •Заболеваемость населения по субъектам Российской Федерации (зарегистрировано заболеваний у больных с диагнозом, установленным
- •Состояние здоровья населения Республики Ингушетия за 2000–2005 гг.
- •Среднемноголетние интенсивные и стандартизованные показатели
- •Содержание тяжелых металлов в источниках питьевого водоснабжения районов рд с высоким уровнем онкозаболеваемости
- •Содержание подвижных форм тяжелых металлов в почвах исследованных населенных пунктов районов рд с высоким уровнем онкозаболеваемости, мг/кг
- •Содержание тяжелых металлов в пастбищной растительности населенных пунктов районов рд
- •Введение Что такое экология, наука она или мировоззрение?
- •Краткая история экологического знания
- •Структура экологической области знания
- •Часть I. Общая экология
- •Глава 1. Вид как основной таксон и
- •Существеннейший этап филогенеза
- •Ареал. Общие сведения об ареале
- •Картирование ареалов
- •Типология ареалов
- •Глава 2. Учение о популяции
- •2.1. Популяция: понятие, определения
- •2.1.1. Плотность популяций и методы ее определения
- •2.1.2. Рождаемость, смертность, иммиграция и эмиграция.
- •Пример расчета демографических показателей в гипотетической стабильной популяции с дискретными возрастными классами (по Пианке, 1981)
- •Значения врожденной скорости популяционного роста (rmax, cyт–1) и времени генерации (т, сут) для отдельных видов некоторых крупных систематических групп (по Пианке, 1981)
- •2.1.3. Модели роста численности популяций. Факторная обусловленность динамики популяций
- •1 Экспонента; 2– логистическая, или s–образная, кривая роста
- •2.1.4. Внутривидовая конкуренция как механизм саморегуляции плотности популяции
- •2.2. Структура и динамика природных популяций
- •2.2.1. Половая и возрастная структура популяций
- •Основные типы хромосомного определения пола (по Яблокову, 1987)
- •Размах колебаний (Lint) третичного соотношения полов (% половозрелых самцов) в популяциях некоторых видов животных (по Яблокову, 1987)
- •Продолжительность созревания полевок Microtus в Южном Зауралье в зависимости от времени рождения (по Шварцу, 1959)
- •2.2.2. Изменчивость плотности популяций во времени
- •Сравнение числа находящихся на нерестилище взрослых леопардовых лягушек Rana pipiens и числа оставленных ими кладок (Merrell, 1968)
- •Глава 3. Организм и факторы среды
- •3.1. Температура
- •3.1.1. Влияние температуры на жизненные процессы
- •3.1.2. Пойкилотермные организмы
- •Сезонные изменения содержания воды в теле и устойчивости к охлаждению у личинок жука Synchroa punctata, живущих в древесине дуба (по n. Payne, 1926).
- •3.1.3. Гомойотермные организмы
- •Теплопродукция различных органов человека в покое
- •Кратность снижения уровня метаболизма во время спячки (Мс) по сравнению с активным состоянием (Ма) у грызунов (по Ch.Kayser, 1965)
- •3.1.4. Стратегии теплообмена
- •3.2. Вода и минеральные соли
- •3.2.1. Водно–солевой обмен у водных организмов
- •Показатели осморегуляции у угря Anguilla anguilla в реке и море (по н.С. Строганову, 1962)
- •Концентрация натрия, калия и мочевины в плазме крови водных позвоночных животных, ммоль/л (по к. Шмидт–Ниельсен, 1982)
- •3.2.2. Водный и солевой обмен на суше. Влажные местообитания
- •Устойчивое к дегидратация у разных видов бесхвостых амфибий
- •Экскреция аммиака в онтогенезе наземной жабы Bufo bufo и водной шпорцевой лягушки Xenopus laevis, % от общего азота (по a. Munro, 1953)
- •3.2.3. Водный и солевой обмен на суше. Сухие биотопы и аридные зоны
- •Потери воды с поверхности тела при комнатной (23–250c) температуре
- •Соотношение основных форм экскреции азота у разных видов черепах, % от общего азота (no V. Moyle, 1949)
- •Концентрация ионов Cl– в моче некоторых видов птиц при искусственной солевой нагрузке (по м. Smyth, g. Bartholomew, 1966)
- •3.3. Кислород
- •3.3.1. Газообмен в водной среде
- •Количество кислорода, растворяющегося в воде при разной температуре, мл/л (по a. Krogh, 1941)
- •Относительная поверхность жабр у личинок эфемерид с разной экологией, см2/г (по д.Н. Кашкарову, 1945)
- •Распространенные дыхательные пигменты и примеры животных, у которых они имеются (к. Шмидт–Ниельсен, 1982)
- •Зарядное (р95) и разрядное (p50) напряжение кислорода у экологически отличающихся видов рыб, кПа (но н.С. Строганову, 1962)
- •Динамика числа эритроцитов в норме при гипоксии у двух видов бычков рода Cottus (
- •3.3.2. Газообмен в воздушной среде
- •Динамика параметров красной крови человека при подъеме в горы (по на. Россолевскому, 1951)
- •Динамика параметров красной крови при акклиматизации человека в горах (по н.А. Россолевскому, 1951)
- •3.3.3. Газообмен у ныряющих животных
- •Кислородные запасы в органами ныряющих животных и человека, см3
- •3.4. Свет
- •3.4.1. Биологическое действие различных участков спектра солнечного излучения
- •3.4.2. Свет и биологические ритмы
- •3.4.3. Физиологическая регуляция сезонных явлений
- •3.5. Общие принципы адаптации на уровне организма
- •3.5.1. Правило оптимума
- •3.5.2. Комплексное воздействие факторов. Правило минимума.
- •3.5.3. Правило двух уровней адаптации
- •Глава 4. Экосистемы. Функционирование, история возникновения и классификация природных экосистем
- •4.1. Функционирование экосистем
- •4.1.1.Энергия в экосистемах. Жизнь как термодинамический процесс
- •4.1.2. Энергия и продуктивность экосистем
- •4.1.3. Строительная роль пищи
- •4.1.4. Круговорот элементов в экосистеме
- •Годовой водный баланс Земли (по м.И. Львовичу)
- •Активность водообмена (по м.И. Львовичу)
- •4.1.5. Равновесие и устойчивость экосистем
- •4.1.6. История и происхождение природных экосистем
- •Принципы классификации природных экосистем
- •Глава 5. Учение о биосфере
- •5.1. Понятие «биосфера»
- •5.2. Строение биосферы
- •5.3. Вещество биосферы
- •5.4. Живое вещество: видовой состав и масса
- •5.5. Состав живых организмов
- •5.6. Основные свойства и функции живого вещества
- •5.7. Круговорот веществ в биосфере
- •5.7.1. Круговорот углерода
- •5.7.2. Круговорот азота
- •5.7.3. Круговорот кислорода
- •5.7.4. Круговорот серы
- •5.7.5. Круговорот фосфора
- •5.8. Эволюция биосферы
- •5.9. Энергетический баланс биосферы
- •5.10. Биосфера как целостная система
- •5.11. Человек и биосфера
- •5.12. Ноосфера как ступень развития биосферы
- •5.13. Эксперимент «Биосфера-2»
- •Глава 6. Биологическое разнообразие как основное условие устойчивости популяций, сообществ и экосистем
- •6.1. Сохранение биологического разнообразия
- •6.2. Сохранение генофонда планеты. Изменение видового и популяционного состава флоры и фауны
- •6.3. Особо охраняемые природные территории
- •6.4. Принципы охраны природы
- •Часть II экологический кризис и роль науки в его преодолении
- •Глава 7. История взаимоотношений человека и природы
- •7.1. Сходства и различия человека и животных
- •7.2. Становление человека
- •7.3. Эволюция общества в его отношении к природе
- •7.4. Непосредственное единство человека с природой
- •7.5. Охотничье–собирательное общество
- •7.6. Земледельческо–скотоводческое общество
- •7.7. Индустриальное общество
- •Глава 8. Современный экологический кризис и научно–техническая революция
- •8.1. Современные экологические катастрофы
- •8.2. Реальные экологически негативные последствия
- •Природа и происхождение основных веществ, загрязняющих атмосферу
- •8.3. Потенциальные экологические опасности
- •8.4. Комплексный характер экологической проблемы
- •Глава 9. Религиозные и классово–экономические причины экологического кризиса
- •9.1.1. Религиозные причины экологического кризиса
- •9.1.2. Культурные причины экологического кризиса
- •9.1.3. Классово–социальные причины экологического кризиса
- •9.1.4. Социальные аспекты экологического кризиса в ссср
- •9.2. Экологическая этика и экологический гуманизм
- •9.2.1. Агрессивно–потребительский и любовно–творческий типы личности
- •9.2.2. Экологическая и глобальная этика
- •9.2.3. Эволюция гуманизма
- •9.2.4. Принципы экологического гуманизма
- •Часть III
- •Глава 10. Пути и принципы рационального
- •10.2. Итоги международных конференций по устойчивому развитию
- •10.3. Идея устойчивого развития и мысли в.И. Вернадского
- •10.4. Экологические основы рационального использования природных ресурсов
- •10.5. Общие принципы экологоориентированного регулирования использования природных ресурсов
- •10.5.1. Социально–демографическое регулирование природопользования
- •10.5.2. Органы государственного управления природопользованием
- •10.5.3. Экологический менеджмент на предприятии
- •Принципы экологического менеджмента на предприятии
- •10.6. Экономическое регулирование использования природных ресурсов
- •10.6.1. Основные принципы, мероприятия и методы экономического регулирования использования природных ресурсов
- •10.6.2. Экономическое стимулирование рационального природопользования
- •10.6.3. Основные механизмы экономического регулирования использования природных ресурсов
- •10.6.4. Концепция правового регулирования использования природных ресурсов
- •10.6.5. Юридическая ответственность за экологические правонарушения
- •Глава 11. Формирование нового экологического
- •Экологическая этика и экологическая эстетика
- •11.2. Роль экологического образования и воспитания в формировании нового экологического мировоззрения человека Сущность экологического воспитания и образования
- •Этапы построения системы экологического образования и воспитания
- •Концепция «Образование в интересах устойчивого развития» Актуальность концепции «Образование в интересах устойчивого развития»
- •Проблемы практической реализации концепции «Образование в интересах устойчивого развития»
- •Условия создания системы образования в интересах устойчивого развития
- •Глава 12. Особенности устойчивого развития горных территорий. Конкурентноспособность отраслей и сценарии устойчивого развития северо–кавказского федерального округа
- •12.1. Состояние природной среды и тенденции развития горных территорий
- •Горные районы и горная политика. Европейский и мировой опыт
- •России нужна государственная политика развития горных регионов
- •Проблемы устойчивого развития горных территорий
- •12.2. Формирование энерго–экологических механизмов управления в социоприродном комплексе Северо–Кавказского Федерального Округа по критериям устойчивого развития
- •Краткий анализ отдельных видов энергии по критериям устойчивого развития
- •Гидроэнергетические ресурсы Республики Дагестан
- •Роль гидроэнергетики в социально–экономическом развитии Дагестана
- •Нетрадиционные источники энергии
- •Перспективы освоения геотермальных ресурсов Дагестана
- •Природные энергоносители. Нефть и газ
- •Твердые горючие полезные ископаемые. Торф, бурый уголь, горючие сланцы
- •Проблемы
- •12.3. Этнокультурные, экологические и экономические функции народного декоративно–прикладного искусства
- •Развитие традиционных народных художественных промыслов (на примере Дагестана)
- •Отчетные данные предприятий народных художественных промыслов по производству изделий за 2009 г.
- •12.4. Конкурентоспособность отраслей и сценарии развития Северо–Кавказского Федерального Округа
- •Условия реализации сценария устойчивого развития
- •12.5. Бассейно–ландшафтная концепция природопользования горных территорий с малочисленными народами и эколого–экономическое возрождение бассейна р. Терек
- •Сброс в бассейн реки Терека загрязняющих веществ в составе сточных вод
- •12.6. Особенности решения социально–экологических проблем в горных территориях с малочисленными народами (локальные сценарии)
- •Возможные, основные элементы типовой программы устойчивого развития горного района с малочисленным народом
- •IV. Охрана и воспроизводство природных ресурсов:
- •V. Источники экономического роста:
- •12.7. Эколого–экономический район (разработана для экологически кризисного и криминогенного района Республики Дагестан)
- •Заключение (Экологоприемлемый путь развития Северо–Кавказского Федерального Округа)
- •Календарь событий в области экологии (по г.О. Розенбергу, с изменениями и дополнениями)
- •Словарь экологических терминов
- •Полезные сайты:
- •Основы экологии и природопользования
3.5.3. Правило двух уровней адаптации
Как и любая биологическая система, организм обитает в сложных и изменчивых условиях среды, с которой поддерживает непрерывные и жизненно важные взаимосвязи, основанные на обменных процессах. Устойчивость организменной системы, ее относительная самостоятельность («индивидуальность»), так же как и осуществление повседневных функций, зависят от того, насколько структура и физиологические свойства организма сохраняют свои главные особенности на фоне меняющихся внешних условий. Именно в этом заключается принцип гомеостаза на уровне организма.
Понятие гомеостаза давно используется в физиологии. Вначале предполагалось, что комплекс адаптивных реакций обеспечивает строгое постоянство внутренней среды организма; отсюда возник и сам термин, который переводится как «одинаковое состояние». Позднее выяснилось, что постоянство внутренних параметров организма относительно, динамично. Функционирование многочисленных механизмов адаптации уже само по себе вызывает определенные изменения внутренней среды организма. Поэтому правильнее считать, что гомеостаз – это состояние динамического равновесия организма со средой, при котором организм сохраняет свои свойства и способность к осуществлению жизненных функций на фоне меняющихся внешних условий. Это состояние достигается в результате функционирования двух генеральных адаптивных систем, действующих на основе различных принципов (И.А. Корниенко и др., 1965; ИА. Шилов, 1974).
Очевидно, что если внешние условия в течение достаточно длительного времени сохраняются более или менее постоянными (сохраняют постоянный режим колебаний вокруг какого–то среднего уровня), то в организме функции (жизнедеятельность) стабилизируются на уровне, адаптивном по отношению к этому среднему (типичному) состоянию среды. Именно такая стабилизация или «настройка» организма отражается в положении зоны оптимума на шкале количественных изменений факторов. Так, различия в климате определяют географические отличия в «настройке» функциональных систем организмов, т. е. разный уровень стабилизации адаптивных систем. Закономерная смена средних условий во времени или в пространстве влечет за собой переход на другой уровень стабилизации (сезонные температурные адаптации, смена типов осморегуляции при анадромных и катадромных миграциях рыб и т. п.).
Но по идентичности условий, их абсолютной повторяемости бывает. В этом случае отклонениям конкретных условий статистического уровня будут соответствовать функциональные адаптации, лабильно отвечающие на эти отклонения и направленные на обеспечение максимальной эффективности функционирования организма в пределах данного стабилизированного состояния. Способность к функциональным адаптациям тем выше, чем более лабилен данный фактор в естественных условиях обитания. Это обстоятельство отражается величине свойственного виду диапазона переносимых изменений фактора, т. е. на его экологической валентности.
Таким образом, если отвлечься от бесконечного разнообразия конкретных форм адаптации у разных видов, то по принципиальному экологическому значению адаптивные механизмы можно разделить на две группы:
1. Механизмы, обеспечивающие адаптивный характер общего уровни стабилизации отдельных функциональных систем и организма в целом по отношению к наиболее генерализованным и устойчивым параметрам среды обитания.
2. Лабильные реакции, поддерживающие относительное постоянство общего уровня стабилизации путем включения адаптивных функциональных реакций при отклонении конкретных условий среды от средних характеристик.
Эти две системы, два уровня адаптации действуют совместно, и их взаимодействие обеспечивает точную «подгонку» функций организма к конкретному состоянию средовых факторов, а в конечном итоге – устойчивое его существование в условиях сложной и динамичной среды.
Поясним эту закономерность несколькими примерами на материале, подробно изложенном в предыдущих главах. В системе теплообмена гомойотермных животных определенная группа приспособительных механизмов обеспечивает общий уровень адаптированности организма к средним температурным условиям данного географического района и (или) сезона года. Это – густота, толщина и структура теплоизолирующих покровов, толщина подкожной жировой прослойки, ряд биохимических особенностей, определяющих общий уровень теплопродукции и возможность ее форсирования. Иногда эти приспособления объединяют термином «температурные адаптации» (И.А. Шилов, 1968) в противоположность реакциям терморегуляции (химической и физической), обеспечивающим ответ организма на быстрые, кратковременные, часто незакономерные отклонения температуры среды от се среднего значения, свойственного данному сезону, географическому району и т. п. Действуя совместно с реакциями стабильного типа, эти лабильные функциональные адаптации поддерживают соответствие жизнедеятельности организма конкретному состоянию среды, не нарушая постоянства общего уровня системы теплообмена. Этот уровень изменяется лишь при устойчивой (например, сезонной) перестройке температурного режима среды.
У пойкилотермных животных стабильный тип температурной адаптации представлен в виде «настройки» температурного оптимума деятельности ферментов и уровня теплоустойчивости тканей. Это выражено, в частности, в виде температурной компенсации, при которой общий уровень обмена у особей, адаптированных к более низким температурам, оказывается выше, чем у адаптированных к более высоким. На этом фоне сохраняется эффективность функциональной реакции на действие конкретных температур.
В системе приспособления газообменной функции к гипоксии такие реакции, как учащенное дыхание и сердцебиение, выброс в кровь депонированных эритроцитов и т. п., представляют собой лабильный функциональный ответ на возрастание кислородного дефицита. Для видов, длительно (эволюционно) приспособленных к обитанию в условиях дефицита кислорода, характерна перестройка фундаментальных свойств газообменной функциональной системы в виде стойкого повышения уровня эритропоэза, возрастания сродства гемоглобина к кислороду, перестройки функции тканевых дыхательных ферментов т. п. Это соответствует смене уровня стабилизации системы газообмена адекватно устойчивым экологическим условиям «заморных» водоемов, высокогорья и т. п.
Строение почек пустынных млекопитающих по сравнению с обитателями более влажных мест отличается большей толщиной мозгового слоя. Это связано со значительной длиной петель Генле у пустынных животных и отражает устойчивое приспособление к интенсивной реабсорбции воды, т. е. уровень стабилизации водообменной функции, соответствующий задаче экономного расходования влаги. Однако у любого вида и даже у любой особи поступление воды в организм непостоянно; регуляция функции почек действием АДГ представляет собой лабильную функциональную адаптацию, действующую на фоне стабильных морфофункциональных приспособлений и вместе с ними обеспечивающую поддержание нормального водно–солевого обмена в изменчивых условиях среды.
Рассматривая адаптивное поведение высших животных (особенно позвоночных), видно, что оно складывается из видового стереотипа поведения и дополняющих его, действующих на его фоне лабильных поведенческих реакций. Стереотипность комплексов поведения, сходно проявляющихся у разных особей одного вида в сходной ситуации, широко известна и представляет собой главный предмет исследования в классической этологии. Генетически запрограммированные стереотипы поведения позволяют осуществлять адаптацию быстро и с минимальными затратами энергии. Но такого рода адаптация возможна лишь по отношению к условиям, стойко повторяющимся на протяжении истории вида. Таким образом, наследственный видовой стереотип поведения есть приспособление к «средним», наиболее общим и постоянным особенностям среды. Поскольку же в природе абсолютной повторяемости условий нет, видовые стереотипы не обеспечивают полной адаптации к изменчивый конкретным ситуациям. Видимо поэтому врожденные реакции составляют лишь основу сложных форм поведения, на которую накладываются иные, более лабильные его элементы (условные и экстраполяционные рефлексы, имитационное поведение и др.). Можно полагать, что и наследственно обусловленный «скелет» видового стереотипа поведения представляет собой лишь общую программу, которая в определенный момент может быть «подстроена» к реальной ситуаций не но, что импринтинг (запечатление) в своей экологической основе представляет собой именно такой процесс «подстройки» программы поведения под воздействием первых стимулов реальной экологической обстановки.
Поведенческие реакции лабильного типа в основном вырабатываются В процессе индивидуального опыта или же (в простейшем варианте) реализуются как непосредственный ответ на ту или иную стимуляцию. Экологическое значение этих реакций заключается в том, что они, возникая в ответ на нерегулярные, относительно кратковременные изменения условий, обеспечивают в конечном итоге максимально приспособительный характер поведения в целом.
Все эти примеры показывают, что две рассматриваемые принципиальные категории адаптивных механизмов имеют разное биологическое значение. Они действуют одновременно, не переходя друг в друга и не исключая друг друга. Именно совместная функция разных ПО уровню адаптивных систем обеспечивает максимальную эффективность приспособления организма к конкретным условиям при минимальных расходах энергии на адаптацию, что представляет собой основную биологическую задачу адаптации вообще (Н.И. Калабухов, 1946). При этом в зависимости от среднего уровня воздействующих факторов отчетливо различаются лишь средние уровни стабилизации адаптивных систем; диапазон колебаний частных функциональных адаптации может перекрываться. Иными словами, спектр уровней стабилизированного состояния систем дискретен, тогда как диапазон лабильных функциональных адаптации непрерывен, что связано с непрерывностью изменения частных значений отдельных действующих факторов. Так, если зависимость газообмена животных от температуры среды выражается непрерывной кривой, то сам характер этой Кривой (расположение в системе координат, места точек перегиба, крутизна ветвей и др.), отражающий уровень стабилизации системы регуляции теплообмена, отчетливо различается у разных видов, географических популяций одного вида, а также в разные сезоны и при неодинаковом физиологическом состоянии организма.
Рассмотренные закономерности адаптивного процесса прослеживаются не только на уровне организма, они характерны и для функционирования суборганизменных систем. Так, в эксперименте с препаратом изолированного сердца лягушки автоматические сокращения сердечной мышцы демонстрируют прямую зависимость от температуры, как это свойственно пойкилотермным животным. Но в ряде случаев в ходе эксперимента обнаруживалась способность к «перенастройке» системы: при определенной степени повышения температуры частота сокращений скачкообразно снижалась, после чего вновь начинала следовать изменениям температуры. Такая перестройка «точки отсчета» расширяла диапазон теплоустойчивости препарата.
В системе пищеварения позвоночных морфология желудочно–кишечного тракта и принципиальный набор пищеварительных ферментов соответствуют механическим и химическим свойствам основного рода пищи, тогда как количество активируемых ферментов, их соотношение рН пищеварительных соков и ряд других параметров лабильно меняются в зависимости от качественного состава пищи в каждый данный момент. В опытах с собаками показано, например, что активность пепсина зависит от характера белков усиливается, а животных (мясо) ослабевает. В зависимости от состава пищи у млекопитающих меняется и оптимум активности пепсина: для яичного белка оптимум рН составляет 1,5, для казеина – 1,8, гемоглобина –2,2.
Напомним, наконец, что в системе регуляции сезонных циклов на уровне гипоталамуса реакции стабильного типа, связанные с осуществлением свободно текущих эндогенных программ, и лабильный корректирующий ответ на конкретные изменения фотопериода регулируются разными структурами. Паравентрикулярное ядро наиболее активно во второй половине лета и осенью, когда сезонные процессы идут преимущественно на базе эндогенною отсчета времени; это ядро слабо реагирует на» экспериментальную фотостимуляцию. В противоположность этому супраоптическое ядро четко реагирует на искусственные изменения фотопериода и наиболее активно весной, когда в развитии сезонной циклики доминирует прямая фотопериодическая стимуляция.
Те же принципиальные механизмы проявляются и на надорганизменных уровнях. Наиболее общей формой приложения рассмотренной схемы путей адаптации к процессам эволюционного преобразования крупных таксонов является разработанная акад. А.Н. Северцовым (1939).концепция ароморфозов и идиоадаптаций, применимость которой гораздо шире, чем это обычно принимается. В последующих главах будет показана приложимость правила двух уровней адаптации к популяционным и биоценотическим системам. Можно утверждать, что биологические системы любой сложности адаптируются к условиям функционирования двумя способами: путем лабильных функциональных адаптации в пределах установившегося уровня стабилизации системы и путем смены этого общего уровня стабилизации.
Эти два пути отражают «стратегию» и «тактику» адаптивного процесса и соответствуют масштабам колебаний внешних условий. В принципе условия среды, вызывающие необходимость адаптивного ответа, могут быть выражены либо относительно непродолжительными (иногда незакономерными) отклонениями различных параметров от их средних значений, либо устойчивыми изменениями среднего уровня (режима) воздействующих условий.