
- •Основы экологии и природопользования
- •Содержание:
- •Часть I. Общая экология
- •Глава 1. Вид как основной таксон и существеннейший этап филогенеза 62
- •Глава 2. Учение о популяции 77
- •Глава 3. Организм и факторы среды 116
- •Глава 4. Экосистемы. Функционирование, история возникновения и
- •Глава 5. Учение о биосфере 248
- •6.2. Сохранение генофонда планеты.
- •Экологический кризис и роль науки в его преодолении
- •9.2. Экологическая этика и экологический гуманизм 316
- •Часть III экологические основы рационального природопользования
- •Глава 10. Пути и принципы рационального использования
- •10.4. Экологические основы рационального
- •10.5. Общие принципы экологоориентированного регулирования
- •10.6. Экономическое регулирование использования природных ресурсов
- •Глава 11. Формирование нового экологического мировоззрения человека в целях обеспечения рационального использования природных ресурсов 354
- •11.1. Основные составляющие экологического
- •11.2. Роль экологического образования и воспитания в
- •Глава 12. Особенности устойчивого развития горных территорий.
- •12.1. Состояние природной среды и тенденции
- •12.2. Формирование энерго–экологических механизмов управления в
- •12.6. Особенности решения социально–экологических проблем в горных территориях с малочисленными народами (локальные сценарии) 399
- •Человечество уже вышло за пределы самоподдерживания земли. Каковы наши стартовые позиции?
- •Распределение субъектов Федерации по изменению ожидаемой
- •Распределение регионов по разности коэффициентов
- •Распределение регионов по изменению уровня безработицы,
- •Численность школьников по Северо–Кавказскому федеральному округу
- •Денежные доходы населения по Северо–Кавказскому Федеральному Округу
- •Величина прожиточного минимума, установленная
- •Индексы производства по отдельным видам экономической деятельности
- •Индексы физического объема инвестиций в основной капитал по Северо–Кавказскому Федеральному Округу Российской Федерации
- •Распределение численности занятых по видам экономической деятельности
- •Численности занятых в экономике России, %
- •Число преступлений, сопряженных с насильственными действиями в отношении потерпевших по Северо–Кавказскому федеральному округу
- •Экологическое состояние и здоровье населения северо-кавказского федерального округа
- •Заболеваемость населения по субъектам Российской Федерации (зарегистрировано заболеваний у больных с диагнозом, установленным
- •Состояние здоровья населения Республики Ингушетия за 2000–2005 гг.
- •Среднемноголетние интенсивные и стандартизованные показатели
- •Содержание тяжелых металлов в источниках питьевого водоснабжения районов рд с высоким уровнем онкозаболеваемости
- •Содержание подвижных форм тяжелых металлов в почвах исследованных населенных пунктов районов рд с высоким уровнем онкозаболеваемости, мг/кг
- •Содержание тяжелых металлов в пастбищной растительности населенных пунктов районов рд
- •Введение Что такое экология, наука она или мировоззрение?
- •Краткая история экологического знания
- •Структура экологической области знания
- •Часть I. Общая экология
- •Глава 1. Вид как основной таксон и
- •Существеннейший этап филогенеза
- •Ареал. Общие сведения об ареале
- •Картирование ареалов
- •Типология ареалов
- •Глава 2. Учение о популяции
- •2.1. Популяция: понятие, определения
- •2.1.1. Плотность популяций и методы ее определения
- •2.1.2. Рождаемость, смертность, иммиграция и эмиграция.
- •Пример расчета демографических показателей в гипотетической стабильной популяции с дискретными возрастными классами (по Пианке, 1981)
- •Значения врожденной скорости популяционного роста (rmax, cyт–1) и времени генерации (т, сут) для отдельных видов некоторых крупных систематических групп (по Пианке, 1981)
- •2.1.3. Модели роста численности популяций. Факторная обусловленность динамики популяций
- •1 Экспонента; 2– логистическая, или s–образная, кривая роста
- •2.1.4. Внутривидовая конкуренция как механизм саморегуляции плотности популяции
- •2.2. Структура и динамика природных популяций
- •2.2.1. Половая и возрастная структура популяций
- •Основные типы хромосомного определения пола (по Яблокову, 1987)
- •Размах колебаний (Lint) третичного соотношения полов (% половозрелых самцов) в популяциях некоторых видов животных (по Яблокову, 1987)
- •Продолжительность созревания полевок Microtus в Южном Зауралье в зависимости от времени рождения (по Шварцу, 1959)
- •2.2.2. Изменчивость плотности популяций во времени
- •Сравнение числа находящихся на нерестилище взрослых леопардовых лягушек Rana pipiens и числа оставленных ими кладок (Merrell, 1968)
- •Глава 3. Организм и факторы среды
- •3.1. Температура
- •3.1.1. Влияние температуры на жизненные процессы
- •3.1.2. Пойкилотермные организмы
- •Сезонные изменения содержания воды в теле и устойчивости к охлаждению у личинок жука Synchroa punctata, живущих в древесине дуба (по n. Payne, 1926).
- •3.1.3. Гомойотермные организмы
- •Теплопродукция различных органов человека в покое
- •Кратность снижения уровня метаболизма во время спячки (Мс) по сравнению с активным состоянием (Ма) у грызунов (по Ch.Kayser, 1965)
- •3.1.4. Стратегии теплообмена
- •3.2. Вода и минеральные соли
- •3.2.1. Водно–солевой обмен у водных организмов
- •Показатели осморегуляции у угря Anguilla anguilla в реке и море (по н.С. Строганову, 1962)
- •Концентрация натрия, калия и мочевины в плазме крови водных позвоночных животных, ммоль/л (по к. Шмидт–Ниельсен, 1982)
- •3.2.2. Водный и солевой обмен на суше. Влажные местообитания
- •Устойчивое к дегидратация у разных видов бесхвостых амфибий
- •Экскреция аммиака в онтогенезе наземной жабы Bufo bufo и водной шпорцевой лягушки Xenopus laevis, % от общего азота (по a. Munro, 1953)
- •3.2.3. Водный и солевой обмен на суше. Сухие биотопы и аридные зоны
- •Потери воды с поверхности тела при комнатной (23–250c) температуре
- •Соотношение основных форм экскреции азота у разных видов черепах, % от общего азота (no V. Moyle, 1949)
- •Концентрация ионов Cl– в моче некоторых видов птиц при искусственной солевой нагрузке (по м. Smyth, g. Bartholomew, 1966)
- •3.3. Кислород
- •3.3.1. Газообмен в водной среде
- •Количество кислорода, растворяющегося в воде при разной температуре, мл/л (по a. Krogh, 1941)
- •Относительная поверхность жабр у личинок эфемерид с разной экологией, см2/г (по д.Н. Кашкарову, 1945)
- •Распространенные дыхательные пигменты и примеры животных, у которых они имеются (к. Шмидт–Ниельсен, 1982)
- •Зарядное (р95) и разрядное (p50) напряжение кислорода у экологически отличающихся видов рыб, кПа (но н.С. Строганову, 1962)
- •Динамика числа эритроцитов в норме при гипоксии у двух видов бычков рода Cottus (
- •3.3.2. Газообмен в воздушной среде
- •Динамика параметров красной крови человека при подъеме в горы (по на. Россолевскому, 1951)
- •Динамика параметров красной крови при акклиматизации человека в горах (по н.А. Россолевскому, 1951)
- •3.3.3. Газообмен у ныряющих животных
- •Кислородные запасы в органами ныряющих животных и человека, см3
- •3.4. Свет
- •3.4.1. Биологическое действие различных участков спектра солнечного излучения
- •3.4.2. Свет и биологические ритмы
- •3.4.3. Физиологическая регуляция сезонных явлений
- •3.5. Общие принципы адаптации на уровне организма
- •3.5.1. Правило оптимума
- •3.5.2. Комплексное воздействие факторов. Правило минимума.
- •3.5.3. Правило двух уровней адаптации
- •Глава 4. Экосистемы. Функционирование, история возникновения и классификация природных экосистем
- •4.1. Функционирование экосистем
- •4.1.1.Энергия в экосистемах. Жизнь как термодинамический процесс
- •4.1.2. Энергия и продуктивность экосистем
- •4.1.3. Строительная роль пищи
- •4.1.4. Круговорот элементов в экосистеме
- •Годовой водный баланс Земли (по м.И. Львовичу)
- •Активность водообмена (по м.И. Львовичу)
- •4.1.5. Равновесие и устойчивость экосистем
- •4.1.6. История и происхождение природных экосистем
- •Принципы классификации природных экосистем
- •Глава 5. Учение о биосфере
- •5.1. Понятие «биосфера»
- •5.2. Строение биосферы
- •5.3. Вещество биосферы
- •5.4. Живое вещество: видовой состав и масса
- •5.5. Состав живых организмов
- •5.6. Основные свойства и функции живого вещества
- •5.7. Круговорот веществ в биосфере
- •5.7.1. Круговорот углерода
- •5.7.2. Круговорот азота
- •5.7.3. Круговорот кислорода
- •5.7.4. Круговорот серы
- •5.7.5. Круговорот фосфора
- •5.8. Эволюция биосферы
- •5.9. Энергетический баланс биосферы
- •5.10. Биосфера как целостная система
- •5.11. Человек и биосфера
- •5.12. Ноосфера как ступень развития биосферы
- •5.13. Эксперимент «Биосфера-2»
- •Глава 6. Биологическое разнообразие как основное условие устойчивости популяций, сообществ и экосистем
- •6.1. Сохранение биологического разнообразия
- •6.2. Сохранение генофонда планеты. Изменение видового и популяционного состава флоры и фауны
- •6.3. Особо охраняемые природные территории
- •6.4. Принципы охраны природы
- •Часть II экологический кризис и роль науки в его преодолении
- •Глава 7. История взаимоотношений человека и природы
- •7.1. Сходства и различия человека и животных
- •7.2. Становление человека
- •7.3. Эволюция общества в его отношении к природе
- •7.4. Непосредственное единство человека с природой
- •7.5. Охотничье–собирательное общество
- •7.6. Земледельческо–скотоводческое общество
- •7.7. Индустриальное общество
- •Глава 8. Современный экологический кризис и научно–техническая революция
- •8.1. Современные экологические катастрофы
- •8.2. Реальные экологически негативные последствия
- •Природа и происхождение основных веществ, загрязняющих атмосферу
- •8.3. Потенциальные экологические опасности
- •8.4. Комплексный характер экологической проблемы
- •Глава 9. Религиозные и классово–экономические причины экологического кризиса
- •9.1.1. Религиозные причины экологического кризиса
- •9.1.2. Культурные причины экологического кризиса
- •9.1.3. Классово–социальные причины экологического кризиса
- •9.1.4. Социальные аспекты экологического кризиса в ссср
- •9.2. Экологическая этика и экологический гуманизм
- •9.2.1. Агрессивно–потребительский и любовно–творческий типы личности
- •9.2.2. Экологическая и глобальная этика
- •9.2.3. Эволюция гуманизма
- •9.2.4. Принципы экологического гуманизма
- •Часть III
- •Глава 10. Пути и принципы рационального
- •10.2. Итоги международных конференций по устойчивому развитию
- •10.3. Идея устойчивого развития и мысли в.И. Вернадского
- •10.4. Экологические основы рационального использования природных ресурсов
- •10.5. Общие принципы экологоориентированного регулирования использования природных ресурсов
- •10.5.1. Социально–демографическое регулирование природопользования
- •10.5.2. Органы государственного управления природопользованием
- •10.5.3. Экологический менеджмент на предприятии
- •Принципы экологического менеджмента на предприятии
- •10.6. Экономическое регулирование использования природных ресурсов
- •10.6.1. Основные принципы, мероприятия и методы экономического регулирования использования природных ресурсов
- •10.6.2. Экономическое стимулирование рационального природопользования
- •10.6.3. Основные механизмы экономического регулирования использования природных ресурсов
- •10.6.4. Концепция правового регулирования использования природных ресурсов
- •10.6.5. Юридическая ответственность за экологические правонарушения
- •Глава 11. Формирование нового экологического
- •Экологическая этика и экологическая эстетика
- •11.2. Роль экологического образования и воспитания в формировании нового экологического мировоззрения человека Сущность экологического воспитания и образования
- •Этапы построения системы экологического образования и воспитания
- •Концепция «Образование в интересах устойчивого развития» Актуальность концепции «Образование в интересах устойчивого развития»
- •Проблемы практической реализации концепции «Образование в интересах устойчивого развития»
- •Условия создания системы образования в интересах устойчивого развития
- •Глава 12. Особенности устойчивого развития горных территорий. Конкурентноспособность отраслей и сценарии устойчивого развития северо–кавказского федерального округа
- •12.1. Состояние природной среды и тенденции развития горных территорий
- •Горные районы и горная политика. Европейский и мировой опыт
- •России нужна государственная политика развития горных регионов
- •Проблемы устойчивого развития горных территорий
- •12.2. Формирование энерго–экологических механизмов управления в социоприродном комплексе Северо–Кавказского Федерального Округа по критериям устойчивого развития
- •Краткий анализ отдельных видов энергии по критериям устойчивого развития
- •Гидроэнергетические ресурсы Республики Дагестан
- •Роль гидроэнергетики в социально–экономическом развитии Дагестана
- •Нетрадиционные источники энергии
- •Перспективы освоения геотермальных ресурсов Дагестана
- •Природные энергоносители. Нефть и газ
- •Твердые горючие полезные ископаемые. Торф, бурый уголь, горючие сланцы
- •Проблемы
- •12.3. Этнокультурные, экологические и экономические функции народного декоративно–прикладного искусства
- •Развитие традиционных народных художественных промыслов (на примере Дагестана)
- •Отчетные данные предприятий народных художественных промыслов по производству изделий за 2009 г.
- •12.4. Конкурентоспособность отраслей и сценарии развития Северо–Кавказского Федерального Округа
- •Условия реализации сценария устойчивого развития
- •12.5. Бассейно–ландшафтная концепция природопользования горных территорий с малочисленными народами и эколого–экономическое возрождение бассейна р. Терек
- •Сброс в бассейн реки Терека загрязняющих веществ в составе сточных вод
- •12.6. Особенности решения социально–экологических проблем в горных территориях с малочисленными народами (локальные сценарии)
- •Возможные, основные элементы типовой программы устойчивого развития горного района с малочисленным народом
- •IV. Охрана и воспроизводство природных ресурсов:
- •V. Источники экономического роста:
- •12.7. Эколого–экономический район (разработана для экологически кризисного и криминогенного района Республики Дагестан)
- •Заключение (Экологоприемлемый путь развития Северо–Кавказского Федерального Округа)
- •Календарь событий в области экологии (по г.О. Розенбергу, с изменениями и дополнениями)
- •Словарь экологических терминов
- •Полезные сайты:
- •Основы экологии и природопользования
Кислородные запасы в органами ныряющих животных и человека, см3
(пo G. Huges, 1963; Schmidt–Nielsen, 1975)
Показатели |
Бутылконос, – 1400 кг |
Тюлень, – 29 кг |
Аллигатор, – 3 кг |
Чистик, – 1 кг |
Человек, – 70 кг |
Легкие |
6000 |
50 |
51 |
40 |
800 |
Кровь |
45000 |
1100 |
8 |
18 |
1000 |
Мышцы |
54000 |
270 |
1 |
8 |
240 |
Тканевые жидкости |
– |
100 |
– |
4 |
200 |
Общий запас О2 |
105000 |
1520 |
60 |
70 |
2240 |
O2 на кг массы |
75 |
52 |
20 |
70 |
32 |
Продолжительность ныряния, мин |
120 |
15 |
15 |
1–2 |
– |
Утки и, видимо, большинство других птиц также ныряют на выдохе. Только для пингвинов (Pygoscelis adeliae, P. papua) доказано ныряние на вдохе; при кратковременности погружения, свойственной этим видам, такая ситуация не грозит им опасным насыщением крови инертными газами. В то же время экспериментально показано, что запас воздуха в дыхательной системе позволяет этим птицам продолжать легочный газообмен во время ныряния.
Существенно большее значение имеет для ныряющих животных запасание кислорода в крови (табл. 57). Эффективность этого пути определяется общим количеством крови, содержанием гемоглобина, числом и суммарной поверхностью эритроцитов и некоторыми другими гематологическими параметрами, в совокупности определяющими кислородную емкость крови. Отмечено, что эти параметры у хорошо ныряющих животных (китообразные, ластоногие) несколько выше, чем у неныряющих. Подобное прослеживается и в ряду ныряющих животных: исследование трех видов дельфинов показало, что общее содержание кислорода в крови высокоактивной и глубоко ныряющей пелагической белокрылой морской свиньи Phocaenoides dalli почти в три раза выше, чем у прибрежной афалины Tursiops truncatus, и на 70 % больше, чем у пелагического полосатого дельфина Lagenorhynchus obliquidens, отличающегося меньшей активностью.
Сходная картина обнаруживается и у птиц: параметры красной крови у ныряющих форм обычно несколько выше, чем у не ныряющих. Как показали исследования лаборатории П.А. Коржуева, общий объем крови у хохлатых пингвинов в среднем составляет 14,3 % от массы тела, у хохлатой чернети – 14,6, у красноголового нырка – 15,6, у гаги – 16–17 %, у других водоплавающих птиц – около 13 %, а у наземных – в среднем около 6 % от массы тела. Концентрация гемоглобина у пингвинов колеблется в пределах 17–20 %, у тупика и кайры этот показатель составляет соответственно 18 и 19,4 %, а у наземных видов он существенно ниже: у степного орла –12,6 %, у домового воробья – 10,8, у неясыти – 7,7 %.
В результате у птиц–ныряльщиков несколько выше может быть и общая кислородная емкость крови: у пингвинов порядка 20 %, у чистиковых – 20–26, у домашней утки – около 17, тогда как у кур – 11,2 об. %; в то же время у голубя кислородная емкость крови составляет 21,2 об.% связано с активным полетом.
По признаку сродства гемоглобина к кислороду ныряющие животные в большинстве случаев существенно не отличаются от неныряющих. Поскольку дыхание у всех этих животных происходит при нормальном давлений, повышение степени сродства не имело бы смысла; при разрядке оксигемоглобина в тканях высокое сродство к кислороду лишь затрудняли бы этот процесс. Относительно высокое сродство гемоглобина к кислороду обнаружено у пингвинов, хотя и у них величина разрядного напряжения (P50 = 28,8–34,4 мм рт. ст., или 3,8–4,6 кПа) сопоставима с этим же показателем у столь хорошего летуна, как голубь (29,5 мм рт. ст. или 3,9 кПа). Не исключено, что высокое сродство гемоглобина к кислороду выполняет у пингвинов особую функцию; ускоряя реоксигенацию крови при коротких появлениях кормящихся птиц на поверхности, а снабжение тканей кислородом облегчается относительно высоким эффектом Бора.
Специальную функциональную направленность имеет запасание кислорода в мышцах путем связывания его с миоглобином (табл. 57). Количество миоглобина в мускулатуре ныряющих животных может быть очень большим. Так, у хохлатого пингвина концентрация миоглобина в грудных мышцах составляет в среднем 3700 мг%, а общая обеспеченность организма достигает 10,4 г миоглобина на 1 кг массы тела. У пингвина Адели концентрация миоглобина 2800–3200 мг%, у антарктического пингвина – 4200–4600 мг%, а у наземных птиц – порядка 300–400 мг%.
И в этом случае важную роль играют экологические особенности разных видов. Установлено, что содержание миоглобина в мышцах дельфина (морская свинья) значительно выше, чем у малоподвижных ламантинов; исключение составляют жевательные мышцы, которые у дюгоня активно работают при погружении животного в воду. При сравнении утки, лысухи и поганки оказалось, что концентрация миоглобина в сердечной мышце выше всего у хорошо ныряющей поганки; у всех трех видов содержание миоглобина было выше в левом желудочке, чем в правом, что явно связано с различной нагрузкой.
Как уже говорилось, миоглобин обладает сродством к кислороду, значительно (примерно в 10 раз) большим, чем гемоглобин. Поэтому при обычных условиях он легко насыщается кислородом, транспортируемым кровью, а в период погружения, когда приток кислорода с кровью уменьшается или прекращается совсем, отдает ранее связанный кислород ткани, окислительная ферментная система которой способна насыщаться кислородом при малых величинах его парциального давления.
Регуляция расхода кислородных запасов. Как показывают расчеты, общий запас кислорода в легких, крови и мышцах не в состоянии обеспечить продолжительную остановку дыхания, свойственную ныряющим животным, если он расходуется с такой же скоростью, как и при свободном дыхании. У пингвинов запас кислорода перед погружением обеспечивает существование даже на уровне метаболизма покоя в течение всего 3 мин, тогда как длительность естественной задержки дыхания при нырянии доходит до 5–7 мин. Тюлени находятся под водой примерно втрое дольше, чем «позволяют» расчетные данные; примерно таково же соотношение расчетных и реальных величин у китов. Все это свидетельствует о том, что расход кислорода в организме во время ныряния существенно ниже, чем при нормальном дыхании. Система приспособлений, определяющих эффект, имеет очень важное значение для всех ныряющих животных. В их основе лежат изменения общего уровня метаболизма и сердечно–сосудистой деятельности.
Одно из наиболее заметных приспособлений к нырянию – замедление сердечного ритма – брадикардия, возникающая с момента погружения в воду. Эта реакция зафиксирована практически у всех видов ныряющих животных, включая рептилий.
В опытах с тюленями и морскими львами, обученными нырять с прикрепленными на теле датчиками, было установлено, что при произвольном нырянии частота пульса сначала быстрая, а затем медленная. Так, у обыкновенного тюленя Phoca vitulina при плавании на поверхности сердечный ритм достигал 137 уд/1 мин, а при погружении снижался до 50 уд/мин. У других видов снижение ритма было еще больше – до 20 уд/мин; у тех же животных при насильственном погружении пульс очень быстро (за 2–3 с) падал до 8 уд/мин. Радиотелеметрическая запись ЭКГ свободно плавающего горбача Меgaptera nobaeanglie показала, что при нырянии на глубину 80 м частота пульса снижалась вдвое.
Аналогичные данные получены и на птицах. Телеметрические наблюдения за свободно ныряющими красноголовыми нырками и хохлатыми чернетями показали, что перед самым погружением развивалось учащение пульса и дыхания. В момент погружения возникала выраженная брадикардия, после чего частота пульса постепенно повышалась до исходной величины; затем следовало всплытие.
Степень замедления сердечного ритма у разных видов неодинакова. У дельфинов при кратковременных произвольных заныриваниях частота пульса сокращалась вдвое, у тюленя Уэддела (насильственное погружение) – в три раза, у морского слона (опыты с погружением головы) – в 4 – 6 раз; у каланов погружение в воду замедляет сердечный ритм в 2–8 раз. Телеметрические наблюдения за пингвинами показали, что у пингвина Адели частота пульса под водой составляла 25 % от исходного (на поверхности) уровня, а у антарктического пингвина – 70 %. Как указывалось, пингвины ныряют на вдохе и, по–видимому, у них в погруженном состоянии продолжается газообмен в легких.
Показано, что частота пульса меняется даже у одной особи в зависимости от характера ныряния: у тюленя Уэддела глубокая брадикардия выражена лишь при длительных погружениях, а при кратковременных ныряниях пульс изменялся слабо.
Эффект брадикардии влечет за собой некоторое снижение уровня метаболизма. Так, обыкновенный тюлень, в спокойном состоянии расходующий около 200 мл О2/мин, при нырянии затрачивает всего 50 мл/мин. Экономное расходование энергии при нырянии характерно и для китообразных: потребление О2 и расход энергии у горбача уменьшаются с глубиной ныряния.
Характерно, что брадикардия развивается очень быстро, задолго до появления кислородной недостаточности. Осуществляется эта реакция рефлекторно, под влиянием сигналов со специфических рецепторов и в результате ощущения влаги в зоне ноздрей и некоторых других частей головы. В опытах с различными млекопитающими и птицами смачивание лицевой части головы или только ноздрей стимулировало брадикардию даже без последующего погружения.
Ныряющим животным свойственна сниженная чувствительность дыхательного центра головного мозга к повышению накопления СО2 в крови. К тому же многие из них временно депонируют венозную кровь в различного рода расширениях венозных сосудов. Это способствует продлению времени нахождения под водой, поднимая порог концентрации СО2, вызывающий непроизвольный вдох.
Чрезвычайно существенно приспособление к экономному расходованию кислорода в виде изменения характера циркуляции крови в организме. Еще в 1940 г. П. Шоландер (P. Scholander), обнаружил, что в течение длительного ныряния содержание молочной кислоты в крови тюленей, уток и пингвинов повышается всего в 2–3 раза, но в момент всплытия концентрация ее в 10 раз превышает исходный (до ныряния) уровень. Он предположил, что образующаяся в мышцах при гликолизе молочная кислота не поступает в кровяное русло из–за ограничения кровоснабжения мышц во время ныряния. При всплытии циркуляция в мышцах восстанавливается, и молочная кислота в больших количествах поступает в общее кровяное русло. Последующие наблюдения подтвердили эту гипотезу. В частности, с помощью ангиографии было показано, что во время ныряния у тюленей периферические кровеносные сосуды сжимаются, и кровоток в них прекращается (или сильно замедляется). В результате основная масса мускулатуры практически полностью отключается от снабжения кислородом крови.
В опытах К. Иогансена (К. Johansen, 1964) погруженным в воду уткам в момент появления брадикардии вводили радиоактивный изотоп 86Rb. Через 2 мин уток забивали и исследовали распределение изотопа в тканях, что было надежным показателем уровня кровотока в них. Было установлено, что вовремя ныряния резко уменьшается (вплоть до полного прекращения) снабжение кровью большей части мускулатуры (кроме мышц головы и пищевода), кишечника, кожи, почек, поджелудочной железы. Мозг и сердечная мышца снабжались кислородом нормально, а, в щитовидной железе и надпочечниках отмечено несколько повышенное кровоснабжение.
Это подтверждается и более современными исследованиями на живых птицах: синхронно с развитием брадикардии у утки резко снижается кровоснабжение брюшного отдела и ног, а также уменьшается масса циркулирующих эритроцитов (М. Heieis, D. Jones, 1988). По–видимому, подобное перераспределение потоков крови имеет место и у ныряющих рептилий. В опытах с черепахой Chrysemys scripta в условиях аноксии (содержание в атмосфере азота) было показано уменьшение кровотока в пищеварительном тракте и почках и увеличение снабжения кровью головного мозга. В скелетных мышцах и сердце кровообращение практически не менялось (D. Davies, 1989).
Как и брадикардия, реакция перераспределения кровотока выражена неединообразно. У пингвинов, например, при нырянии продолжается циркуляция крови в мускулатуре, хотя и сниженная. Сохранение внутримышечной циркуляции отмечено и у дельфинов афалин, совершающих короткие (около 1,5 мин) заныривания. Вероятно, этот тип адаптации используется лишь при длительных погружениях.
Принцип сердечно–сосудистых адаптаций в виде брадикардии и перераспределения токов крови оказывается общим для всех ныряющих позвоночных животных. Отключение от участия в циркуляции ряда сосудов обеспечивает поддержание нормального, несмотря на брадикардию, артериального давления, а также подачу запасенного в крови кислорода к органам, активно работающим в погруженном состоянии. Остальные органы (в первую очередь туловищная мускулатура) используют кислород, запасенный в виде оксимиоглобина, а израсходовав его, переключаются на анаэробные процессы, о чем и свидетельствует повышение уровня молочной кислоты как в самих мышцах, так и (после всплытия) в крови. Биологическая значимость перераспределения кровотока при нырянии подтверждается тем, что в опытах с тюленями выключение сфинктора задней полой вены вело к гибели животных уже после 4–минутного пребывания под водой.
Комплекс адаптивных реакций ныряющих животных контролируется центральной нервной системой на уровне продолговатого мозга.