
- •Основы экологии и природопользования
- •Содержание:
- •Часть I. Общая экология
- •Глава 1. Вид как основной таксон и существеннейший этап филогенеза 62
- •Глава 2. Учение о популяции 77
- •Глава 3. Организм и факторы среды 116
- •Глава 4. Экосистемы. Функционирование, история возникновения и
- •Глава 5. Учение о биосфере 248
- •6.2. Сохранение генофонда планеты.
- •Экологический кризис и роль науки в его преодолении
- •9.2. Экологическая этика и экологический гуманизм 316
- •Часть III экологические основы рационального природопользования
- •Глава 10. Пути и принципы рационального использования
- •10.4. Экологические основы рационального
- •10.5. Общие принципы экологоориентированного регулирования
- •10.6. Экономическое регулирование использования природных ресурсов
- •Глава 11. Формирование нового экологического мировоззрения человека в целях обеспечения рационального использования природных ресурсов 354
- •11.1. Основные составляющие экологического
- •11.2. Роль экологического образования и воспитания в
- •Глава 12. Особенности устойчивого развития горных территорий.
- •12.1. Состояние природной среды и тенденции
- •12.2. Формирование энерго–экологических механизмов управления в
- •12.6. Особенности решения социально–экологических проблем в горных территориях с малочисленными народами (локальные сценарии) 399
- •Человечество уже вышло за пределы самоподдерживания земли. Каковы наши стартовые позиции?
- •Распределение субъектов Федерации по изменению ожидаемой
- •Распределение регионов по разности коэффициентов
- •Распределение регионов по изменению уровня безработицы,
- •Численность школьников по Северо–Кавказскому федеральному округу
- •Денежные доходы населения по Северо–Кавказскому Федеральному Округу
- •Величина прожиточного минимума, установленная
- •Индексы производства по отдельным видам экономической деятельности
- •Индексы физического объема инвестиций в основной капитал по Северо–Кавказскому Федеральному Округу Российской Федерации
- •Распределение численности занятых по видам экономической деятельности
- •Численности занятых в экономике России, %
- •Число преступлений, сопряженных с насильственными действиями в отношении потерпевших по Северо–Кавказскому федеральному округу
- •Экологическое состояние и здоровье населения северо-кавказского федерального округа
- •Заболеваемость населения по субъектам Российской Федерации (зарегистрировано заболеваний у больных с диагнозом, установленным
- •Состояние здоровья населения Республики Ингушетия за 2000–2005 гг.
- •Среднемноголетние интенсивные и стандартизованные показатели
- •Содержание тяжелых металлов в источниках питьевого водоснабжения районов рд с высоким уровнем онкозаболеваемости
- •Содержание подвижных форм тяжелых металлов в почвах исследованных населенных пунктов районов рд с высоким уровнем онкозаболеваемости, мг/кг
- •Содержание тяжелых металлов в пастбищной растительности населенных пунктов районов рд
- •Введение Что такое экология, наука она или мировоззрение?
- •Краткая история экологического знания
- •Структура экологической области знания
- •Часть I. Общая экология
- •Глава 1. Вид как основной таксон и
- •Существеннейший этап филогенеза
- •Ареал. Общие сведения об ареале
- •Картирование ареалов
- •Типология ареалов
- •Глава 2. Учение о популяции
- •2.1. Популяция: понятие, определения
- •2.1.1. Плотность популяций и методы ее определения
- •2.1.2. Рождаемость, смертность, иммиграция и эмиграция.
- •Пример расчета демографических показателей в гипотетической стабильной популяции с дискретными возрастными классами (по Пианке, 1981)
- •Значения врожденной скорости популяционного роста (rmax, cyт–1) и времени генерации (т, сут) для отдельных видов некоторых крупных систематических групп (по Пианке, 1981)
- •2.1.3. Модели роста численности популяций. Факторная обусловленность динамики популяций
- •1 Экспонента; 2– логистическая, или s–образная, кривая роста
- •2.1.4. Внутривидовая конкуренция как механизм саморегуляции плотности популяции
- •2.2. Структура и динамика природных популяций
- •2.2.1. Половая и возрастная структура популяций
- •Основные типы хромосомного определения пола (по Яблокову, 1987)
- •Размах колебаний (Lint) третичного соотношения полов (% половозрелых самцов) в популяциях некоторых видов животных (по Яблокову, 1987)
- •Продолжительность созревания полевок Microtus в Южном Зауралье в зависимости от времени рождения (по Шварцу, 1959)
- •2.2.2. Изменчивость плотности популяций во времени
- •Сравнение числа находящихся на нерестилище взрослых леопардовых лягушек Rana pipiens и числа оставленных ими кладок (Merrell, 1968)
- •Глава 3. Организм и факторы среды
- •3.1. Температура
- •3.1.1. Влияние температуры на жизненные процессы
- •3.1.2. Пойкилотермные организмы
- •Сезонные изменения содержания воды в теле и устойчивости к охлаждению у личинок жука Synchroa punctata, живущих в древесине дуба (по n. Payne, 1926).
- •3.1.3. Гомойотермные организмы
- •Теплопродукция различных органов человека в покое
- •Кратность снижения уровня метаболизма во время спячки (Мс) по сравнению с активным состоянием (Ма) у грызунов (по Ch.Kayser, 1965)
- •3.1.4. Стратегии теплообмена
- •3.2. Вода и минеральные соли
- •3.2.1. Водно–солевой обмен у водных организмов
- •Показатели осморегуляции у угря Anguilla anguilla в реке и море (по н.С. Строганову, 1962)
- •Концентрация натрия, калия и мочевины в плазме крови водных позвоночных животных, ммоль/л (по к. Шмидт–Ниельсен, 1982)
- •3.2.2. Водный и солевой обмен на суше. Влажные местообитания
- •Устойчивое к дегидратация у разных видов бесхвостых амфибий
- •Экскреция аммиака в онтогенезе наземной жабы Bufo bufo и водной шпорцевой лягушки Xenopus laevis, % от общего азота (по a. Munro, 1953)
- •3.2.3. Водный и солевой обмен на суше. Сухие биотопы и аридные зоны
- •Потери воды с поверхности тела при комнатной (23–250c) температуре
- •Соотношение основных форм экскреции азота у разных видов черепах, % от общего азота (no V. Moyle, 1949)
- •Концентрация ионов Cl– в моче некоторых видов птиц при искусственной солевой нагрузке (по м. Smyth, g. Bartholomew, 1966)
- •3.3. Кислород
- •3.3.1. Газообмен в водной среде
- •Количество кислорода, растворяющегося в воде при разной температуре, мл/л (по a. Krogh, 1941)
- •Относительная поверхность жабр у личинок эфемерид с разной экологией, см2/г (по д.Н. Кашкарову, 1945)
- •Распространенные дыхательные пигменты и примеры животных, у которых они имеются (к. Шмидт–Ниельсен, 1982)
- •Зарядное (р95) и разрядное (p50) напряжение кислорода у экологически отличающихся видов рыб, кПа (но н.С. Строганову, 1962)
- •Динамика числа эритроцитов в норме при гипоксии у двух видов бычков рода Cottus (
- •3.3.2. Газообмен в воздушной среде
- •Динамика параметров красной крови человека при подъеме в горы (по на. Россолевскому, 1951)
- •Динамика параметров красной крови при акклиматизации человека в горах (по н.А. Россолевскому, 1951)
- •3.3.3. Газообмен у ныряющих животных
- •Кислородные запасы в органами ныряющих животных и человека, см3
- •3.4. Свет
- •3.4.1. Биологическое действие различных участков спектра солнечного излучения
- •3.4.2. Свет и биологические ритмы
- •3.4.3. Физиологическая регуляция сезонных явлений
- •3.5. Общие принципы адаптации на уровне организма
- •3.5.1. Правило оптимума
- •3.5.2. Комплексное воздействие факторов. Правило минимума.
- •3.5.3. Правило двух уровней адаптации
- •Глава 4. Экосистемы. Функционирование, история возникновения и классификация природных экосистем
- •4.1. Функционирование экосистем
- •4.1.1.Энергия в экосистемах. Жизнь как термодинамический процесс
- •4.1.2. Энергия и продуктивность экосистем
- •4.1.3. Строительная роль пищи
- •4.1.4. Круговорот элементов в экосистеме
- •Годовой водный баланс Земли (по м.И. Львовичу)
- •Активность водообмена (по м.И. Львовичу)
- •4.1.5. Равновесие и устойчивость экосистем
- •4.1.6. История и происхождение природных экосистем
- •Принципы классификации природных экосистем
- •Глава 5. Учение о биосфере
- •5.1. Понятие «биосфера»
- •5.2. Строение биосферы
- •5.3. Вещество биосферы
- •5.4. Живое вещество: видовой состав и масса
- •5.5. Состав живых организмов
- •5.6. Основные свойства и функции живого вещества
- •5.7. Круговорот веществ в биосфере
- •5.7.1. Круговорот углерода
- •5.7.2. Круговорот азота
- •5.7.3. Круговорот кислорода
- •5.7.4. Круговорот серы
- •5.7.5. Круговорот фосфора
- •5.8. Эволюция биосферы
- •5.9. Энергетический баланс биосферы
- •5.10. Биосфера как целостная система
- •5.11. Человек и биосфера
- •5.12. Ноосфера как ступень развития биосферы
- •5.13. Эксперимент «Биосфера-2»
- •Глава 6. Биологическое разнообразие как основное условие устойчивости популяций, сообществ и экосистем
- •6.1. Сохранение биологического разнообразия
- •6.2. Сохранение генофонда планеты. Изменение видового и популяционного состава флоры и фауны
- •6.3. Особо охраняемые природные территории
- •6.4. Принципы охраны природы
- •Часть II экологический кризис и роль науки в его преодолении
- •Глава 7. История взаимоотношений человека и природы
- •7.1. Сходства и различия человека и животных
- •7.2. Становление человека
- •7.3. Эволюция общества в его отношении к природе
- •7.4. Непосредственное единство человека с природой
- •7.5. Охотничье–собирательное общество
- •7.6. Земледельческо–скотоводческое общество
- •7.7. Индустриальное общество
- •Глава 8. Современный экологический кризис и научно–техническая революция
- •8.1. Современные экологические катастрофы
- •8.2. Реальные экологически негативные последствия
- •Природа и происхождение основных веществ, загрязняющих атмосферу
- •8.3. Потенциальные экологические опасности
- •8.4. Комплексный характер экологической проблемы
- •Глава 9. Религиозные и классово–экономические причины экологического кризиса
- •9.1.1. Религиозные причины экологического кризиса
- •9.1.2. Культурные причины экологического кризиса
- •9.1.3. Классово–социальные причины экологического кризиса
- •9.1.4. Социальные аспекты экологического кризиса в ссср
- •9.2. Экологическая этика и экологический гуманизм
- •9.2.1. Агрессивно–потребительский и любовно–творческий типы личности
- •9.2.2. Экологическая и глобальная этика
- •9.2.3. Эволюция гуманизма
- •9.2.4. Принципы экологического гуманизма
- •Часть III
- •Глава 10. Пути и принципы рационального
- •10.2. Итоги международных конференций по устойчивому развитию
- •10.3. Идея устойчивого развития и мысли в.И. Вернадского
- •10.4. Экологические основы рационального использования природных ресурсов
- •10.5. Общие принципы экологоориентированного регулирования использования природных ресурсов
- •10.5.1. Социально–демографическое регулирование природопользования
- •10.5.2. Органы государственного управления природопользованием
- •10.5.3. Экологический менеджмент на предприятии
- •Принципы экологического менеджмента на предприятии
- •10.6. Экономическое регулирование использования природных ресурсов
- •10.6.1. Основные принципы, мероприятия и методы экономического регулирования использования природных ресурсов
- •10.6.2. Экономическое стимулирование рационального природопользования
- •10.6.3. Основные механизмы экономического регулирования использования природных ресурсов
- •10.6.4. Концепция правового регулирования использования природных ресурсов
- •10.6.5. Юридическая ответственность за экологические правонарушения
- •Глава 11. Формирование нового экологического
- •Экологическая этика и экологическая эстетика
- •11.2. Роль экологического образования и воспитания в формировании нового экологического мировоззрения человека Сущность экологического воспитания и образования
- •Этапы построения системы экологического образования и воспитания
- •Концепция «Образование в интересах устойчивого развития» Актуальность концепции «Образование в интересах устойчивого развития»
- •Проблемы практической реализации концепции «Образование в интересах устойчивого развития»
- •Условия создания системы образования в интересах устойчивого развития
- •Глава 12. Особенности устойчивого развития горных территорий. Конкурентноспособность отраслей и сценарии устойчивого развития северо–кавказского федерального округа
- •12.1. Состояние природной среды и тенденции развития горных территорий
- •Горные районы и горная политика. Европейский и мировой опыт
- •России нужна государственная политика развития горных регионов
- •Проблемы устойчивого развития горных территорий
- •12.2. Формирование энерго–экологических механизмов управления в социоприродном комплексе Северо–Кавказского Федерального Округа по критериям устойчивого развития
- •Краткий анализ отдельных видов энергии по критериям устойчивого развития
- •Гидроэнергетические ресурсы Республики Дагестан
- •Роль гидроэнергетики в социально–экономическом развитии Дагестана
- •Нетрадиционные источники энергии
- •Перспективы освоения геотермальных ресурсов Дагестана
- •Природные энергоносители. Нефть и газ
- •Твердые горючие полезные ископаемые. Торф, бурый уголь, горючие сланцы
- •Проблемы
- •12.3. Этнокультурные, экологические и экономические функции народного декоративно–прикладного искусства
- •Развитие традиционных народных художественных промыслов (на примере Дагестана)
- •Отчетные данные предприятий народных художественных промыслов по производству изделий за 2009 г.
- •12.4. Конкурентоспособность отраслей и сценарии развития Северо–Кавказского Федерального Округа
- •Условия реализации сценария устойчивого развития
- •12.5. Бассейно–ландшафтная концепция природопользования горных территорий с малочисленными народами и эколого–экономическое возрождение бассейна р. Терек
- •Сброс в бассейн реки Терека загрязняющих веществ в составе сточных вод
- •12.6. Особенности решения социально–экологических проблем в горных территориях с малочисленными народами (локальные сценарии)
- •Возможные, основные элементы типовой программы устойчивого развития горного района с малочисленным народом
- •IV. Охрана и воспроизводство природных ресурсов:
- •V. Источники экономического роста:
- •12.7. Эколого–экономический район (разработана для экологически кризисного и криминогенного района Республики Дагестан)
- •Заключение (Экологоприемлемый путь развития Северо–Кавказского Федерального Округа)
- •Календарь событий в области экологии (по г.О. Розенбергу, с изменениями и дополнениями)
- •Словарь экологических терминов
- •Полезные сайты:
- •Основы экологии и природопользования
Показатели осморегуляции у угря Anguilla anguilla в реке и море (по н.С. Строганову, 1962)
Водоем |
∆t0 среды |
Выделение мочи, мл кг1∙ ч1 |
∆t0 мочи |
∆t0 крови |
Река |
0,08 |
60–150 |
0,09 |
0,63 |
Море |
1,85 |
2–4 |
0,79 |
0,82 |
У молодых лососевых рыб подготовка к смене типа осморегуляции начинается еще в реке: в процессе так называемой смолтификации увеличивается концентрация осмотически активных веществ в плазме крови, возрастает число хлоридных клеток в жабрах, активность ферментов в них и т. п. Все это повышает устойчивость к возрастающей солености при выходе в море. У идущих на нерест взрослых особей при миграции к устьям рек перестройки осморегуляции имеют обратный характер. При этом нерестовые стада рыб задерживаются в эстуарных зонах рек, характеризующихся промежуточной соленостью: здесь в течение приливно–отливного цикла происходит «внедрение» соленой воды и перемешивание ее с пресной речной. Мигрирующие рыбы некоторое время совершают возвратно–поступательные перемещения вместе с приливной волной; за это время происходит перестройка системы осморегуляции, что позволяет рыбам подняться вверх по течению к местам нерестилищ.
Осморегуляция в море. Хрящевые рыбы. Приспособления к обитанию в морской среде у хрящевых рыб основаны на иных принципах. Концентрация солей в их крови сходна с таковой у костистых рыб и ниже, чем в морской воде (табл. 44). Однако осмотическое давление жидкостей тела у этих рыб практически равно осмотическому давлению морской воды, слегка даже превышая его. Достигается это тем, что в почечных канальцах хрящевых рыб идет активная реабсорбция мочевины: 70–99 % мочевины возвращается из первичной мочи в кровь, повышая ее суммарное осмотическое давление. Проницаемость жабр для мочевины у этих рыб в отличие от костистых понижена, и избыток мочевины выводится практически только через почки.
Помимо мочевины в крови хрящевых рыб накапливается триметиламиноксид (ТМАО), также обладающий высокой осмотической активностью. ТМАО содержится в жидкостях тела многих морских организмов, но у пластиножаберных рыб его концентрация особенно велика. Так, если у морских костистых рыб его содержание в крови составляет 25–460 мг %, то у акуловых – 250–1430 мг %. Таким образом, сохраняя концентрацию биологически важных солей неизменной, хрящевые рыбы по суммарному осмотическому давлению внутренней среды почти не отличаются от морской воды; оно меняется соответственно изменениям внешней солености. Хрящевых рыб называют метизотоническими животными, т. е. как бы промежуточными между гомойо– и пойкилоосмотическими формами, обладающими внешними признаками изотонии. Подобный тип осморегуляции свойствен некоторым осморегулирующим беспозвоночным животным, накапливающим в теле свободные аминокислоты.
Таблица 44.
Концентрация натрия, калия и мочевины в плазме крови водных позвоночных животных, ммоль/л (по к. Шмидт–Ниельсен, 1982)
Виды |
Среда обитания |
Na+ |
K+ |
Моче-вина |
Осмотическая концентрация, мосм/л |
Морская вода |
|
450 |
10 |
0 |
1000 |
Круглоротые |
|
|
|
|
|
Миксина Myxim |
Море |
549 |
11 |
|
1152 |
Минога Petromyzon |
|
|
|
|
317 |
Минога Lampetra |
Пресные воды |
120 |
3 |
1 |
270 |
Хрящевые рыбы |
|
|
|
|
|
Скат Raja |
Море |
289 |
4 |
444 |
1050 |
Скат Potamotrygon |
Пресные воды |
150 |
6 |
1 |
308 |
Акула Squalus |
Море |
287 |
5 |
354 |
1000 |
Кистеперые рыбы |
|
|
|
|
|
Латимерия Latimeria |
Море |
181 |
– |
355 |
1181 |
Костистые рыбы |
|
|
|
|
|
Золотая рыбка Carassius |
Пресные воды |
115 |
4 |
|
259 |
Рыба–жаба Ospanus |
Море |
160 |
5 |
|
392 |
Угорь Anguilla |
Пресные воды |
155 |
3 |
|
323 |
Море |
177 |
3 |
|
371 |
|
Лосось Salmo |
Пресные воды |
181 |
2 |
|
340 |
Море |
212 |
3 |
|
400 |
На снижение солености среды хрящевые рыбы реагируют уменьшением реабсорбции мочевины и усилением выведения ее (и ТМАО) с мочой. Благодаря этим регуляторным процессам акуловые рыбы (по крайней мере, некоторые виды) выдерживают большие колебания солености среды, появляясь даже в пресных водах. Относительно немногочисленные виды пресноводных скатов, имея клубочковую почку, осуществляют осморегуляцию, подобно пресноводным костистым рыбам. Содержание мочевины в крови у них хотя и выше, чем у костистых рыб, но все же меньше, чем у морских форм; реабсорбция мочевины в почечных канальцах практически отсутствует, жабры способны поглощать Na+ и Сl– из окружающей среды.
Поскольку внутренняя среда хрящевых рыб слегка гипертонична по отношению к морской воде, происходит умеренный осмотический приток воды в организм, который обеспечивает потребности мочеобразования. Поэтому в отличие от костистых рыб акуловые не пьют морскую воду и не получают с ней дополнительной солевой нагрузки. Избыток солей, полученных с пищей, выводится в составе мочи, фекалий и секрета ректальной железы.
Аналогичный хрящевым рыбам тип осморегуляции обнаружен у единственного современного вида кистеперых рыб Latimeria chalumnae, ведущего морской образ жизни (табл. 44). Благодаря высокому (сравнимому с акулами) содержанию в крови мочевины (355 ммоль/л) и ТМАО (более 100 ммоль/л) общая осмотическая концентрация плазмы у латимерии близка к таковой вод Индийского океана (соответственно 1181 и 1000 мосм/л). При этом концентрация электролитов составляет лишь 40% от их содержания в морской воде. Сходство с пластиножаберными дополняется наличием у латимерии ректальной железы.
Значительное количество мочевины синтезируется и задерживается в крови у двоякодышащих рыб. У осетровых рыб в морской воде также увеличивается содержание в сыворотке крови осмотически активных веществ, что ведет к сближению осмотического давления крови и окружающей среды. В отличие от хрящевых рыб у осетровых при изменении солености среды колеблется и содержание электролитов, в частности хлористого натрия. Создается впечатление, что у хрящевых ганоидов (осетровые) регуляция водно–солевого обмена осуществляется по типу, промежуточному между осморегуляцией хрящевых и высших костных рыб.
Среди круглоротых миноги обладают вполне развитой системой осморегуляции. Им свойственна клубочковая почка и общий тип осморегуляции, сходный с костистыми рыбами. Миксины – типичные морские формы – характеризуются изотоничностью жидкостей тела и морской воды. У этих животных 99 % осмотического давления внутренней среды определяется неорганическими ионами, концентрация которых весьма лабильна и быстро следует за изменениями солености окружающей среды (слегка превышая ее). Нередко это обстоятельство рассматривают как показатель пойкилоосмотичности миксин. Однако выяснено, что эти формы способны к активной реабсорбции Na+ в почечных канальцах. Искусственная осмотическая нагрузка ведет у них к активации гипоталамо–гипофизарной системы, что указывает хотя бы на потенциальную способность миксин к осморегуляции.
Физиологический контроль осморегуляции. Интенсивность работы осморегуляторных механизмов стимулируется динамикой осмотического давления внутренней среды. У рыб регуляция этих процессов связана главным образом с нервно–гуморальными механизмами системы гипоталамус – гипофиз – интерреналовая ткань. В ответ на осмотическую стимуляцию клетки гипоталамуса вырабатывают нейросекреты, которые по аксонам нейросекреторных клеток передаются в заднюю (нервную) долю гипофиза. Отсюда они попадают в кровь уже в виде гормонов с общим названием АДГ (антидиуретический гормон), регулирующих интенсивность клубочковой фильтрации. Одновременно другие клетки гипоталамуса продуцируют нейросекреты, которые по специальным кровеносным сосудам попадают в переднюю долю гипофиза (аденогипофиз) и здесь стимулируют продукцию пролактина и адренокортикотропного гормона (АКТГ). Пролактин играет ведущую роль в пресноводной осморегуляции, а АКТГ, в свою очередь, стимулирует интерреналовую ткань, вырабатывающую специфические гормоны, регулирующие водно–солевой обмен (главным образом в морской воде).
Экологические варианты осморегуляции. Активная осморегуляция обеспечивает не только приспособления принципиального характера (пресноводный и солоноводный тип осморегуляции), но и лабильные адаптивные реакции на меняющийся градиент осмотического давления организма и среды. Это в значительной степени расширяет экологические возможности животных–осморегуляторов. Адаптации этого типа проявляются у разных видов неодинаково, как правило, в соответствии с особенностями среды обитания и образа жизни.
Так, рыбы Xiphister atropurpureus, живущие в приливно–отливной зоне, систематически подвергаются изменениям солености среды и соответственно быстро и совершенно регулируют свой водно–солевой обмен. Три вида бычков рода Cortus отличаются по особенностям биологии и способности к осморегуляции: у пресноводного С. morio скорость потери Na+ через жабры при повышении солености воды вдвое ниже, чем у морских С. bubalis и С. scorpius. В этих же условиях С. mоrio и С. bubalis (обитает в опресненных участках моря) увеличивают объем выпитой воды, тогда как чисто морской С. scorpius, обитающий в местах с устойчивой соленостью, не проявляет такой реакции. Аналогичным образом популяция Cyprinodon variegatus, живущая в открытой лагуне с резко меняющейся соленостью, оказалась более устойчивой к экспериментальным перепадам концентрации солей в воде, чем популяции того же вида, обитающие в условиях хотя и различной (16 и 290/00), но устойчивой солености.
Это же характерно и для беспозвоночных животных. Например, офиуры Ophiothrix angulata из эстуария в Южной Каролине (США) менее устойчивы к снижению солености, чем представители того же вида из эстуария во Флориде, где наблюдаются частые и длительные периоды опреснения.
В целом сложная система осморегулирующих механизмов определяет как общую адаптацию гидробионтов к жизни в водоемах разного типа, так и приспособления к занятию разных экологических ниш в каждом варианте водной среды, в том числе и в условиях неустойчивой солености (эстуарии крупных рек, приливно–отливные зоны, ряд внутренних водоемов).