
- •Основы экологии и природопользования
- •Содержание:
- •Часть I. Общая экология
- •Глава 1. Вид как основной таксон и существеннейший этап филогенеза 62
- •Глава 2. Учение о популяции 77
- •Глава 3. Организм и факторы среды 116
- •Глава 4. Экосистемы. Функционирование, история возникновения и
- •Глава 5. Учение о биосфере 248
- •6.2. Сохранение генофонда планеты.
- •Экологический кризис и роль науки в его преодолении
- •9.2. Экологическая этика и экологический гуманизм 316
- •Часть III экологические основы рационального природопользования
- •Глава 10. Пути и принципы рационального использования
- •10.4. Экологические основы рационального
- •10.5. Общие принципы экологоориентированного регулирования
- •10.6. Экономическое регулирование использования природных ресурсов
- •Глава 11. Формирование нового экологического мировоззрения человека в целях обеспечения рационального использования природных ресурсов 354
- •11.1. Основные составляющие экологического
- •11.2. Роль экологического образования и воспитания в
- •Глава 12. Особенности устойчивого развития горных территорий.
- •12.1. Состояние природной среды и тенденции
- •12.2. Формирование энерго–экологических механизмов управления в
- •12.6. Особенности решения социально–экологических проблем в горных территориях с малочисленными народами (локальные сценарии) 399
- •Человечество уже вышло за пределы самоподдерживания земли. Каковы наши стартовые позиции?
- •Распределение субъектов Федерации по изменению ожидаемой
- •Распределение регионов по разности коэффициентов
- •Распределение регионов по изменению уровня безработицы,
- •Численность школьников по Северо–Кавказскому федеральному округу
- •Денежные доходы населения по Северо–Кавказскому Федеральному Округу
- •Величина прожиточного минимума, установленная
- •Индексы производства по отдельным видам экономической деятельности
- •Индексы физического объема инвестиций в основной капитал по Северо–Кавказскому Федеральному Округу Российской Федерации
- •Распределение численности занятых по видам экономической деятельности
- •Численности занятых в экономике России, %
- •Число преступлений, сопряженных с насильственными действиями в отношении потерпевших по Северо–Кавказскому федеральному округу
- •Экологическое состояние и здоровье населения северо-кавказского федерального округа
- •Заболеваемость населения по субъектам Российской Федерации (зарегистрировано заболеваний у больных с диагнозом, установленным
- •Состояние здоровья населения Республики Ингушетия за 2000–2005 гг.
- •Среднемноголетние интенсивные и стандартизованные показатели
- •Содержание тяжелых металлов в источниках питьевого водоснабжения районов рд с высоким уровнем онкозаболеваемости
- •Содержание подвижных форм тяжелых металлов в почвах исследованных населенных пунктов районов рд с высоким уровнем онкозаболеваемости, мг/кг
- •Содержание тяжелых металлов в пастбищной растительности населенных пунктов районов рд
- •Введение Что такое экология, наука она или мировоззрение?
- •Краткая история экологического знания
- •Структура экологической области знания
- •Часть I. Общая экология
- •Глава 1. Вид как основной таксон и
- •Существеннейший этап филогенеза
- •Ареал. Общие сведения об ареале
- •Картирование ареалов
- •Типология ареалов
- •Глава 2. Учение о популяции
- •2.1. Популяция: понятие, определения
- •2.1.1. Плотность популяций и методы ее определения
- •2.1.2. Рождаемость, смертность, иммиграция и эмиграция.
- •Пример расчета демографических показателей в гипотетической стабильной популяции с дискретными возрастными классами (по Пианке, 1981)
- •Значения врожденной скорости популяционного роста (rmax, cyт–1) и времени генерации (т, сут) для отдельных видов некоторых крупных систематических групп (по Пианке, 1981)
- •2.1.3. Модели роста численности популяций. Факторная обусловленность динамики популяций
- •1 Экспонента; 2– логистическая, или s–образная, кривая роста
- •2.1.4. Внутривидовая конкуренция как механизм саморегуляции плотности популяции
- •2.2. Структура и динамика природных популяций
- •2.2.1. Половая и возрастная структура популяций
- •Основные типы хромосомного определения пола (по Яблокову, 1987)
- •Размах колебаний (Lint) третичного соотношения полов (% половозрелых самцов) в популяциях некоторых видов животных (по Яблокову, 1987)
- •Продолжительность созревания полевок Microtus в Южном Зауралье в зависимости от времени рождения (по Шварцу, 1959)
- •2.2.2. Изменчивость плотности популяций во времени
- •Сравнение числа находящихся на нерестилище взрослых леопардовых лягушек Rana pipiens и числа оставленных ими кладок (Merrell, 1968)
- •Глава 3. Организм и факторы среды
- •3.1. Температура
- •3.1.1. Влияние температуры на жизненные процессы
- •3.1.2. Пойкилотермные организмы
- •Сезонные изменения содержания воды в теле и устойчивости к охлаждению у личинок жука Synchroa punctata, живущих в древесине дуба (по n. Payne, 1926).
- •3.1.3. Гомойотермные организмы
- •Теплопродукция различных органов человека в покое
- •Кратность снижения уровня метаболизма во время спячки (Мс) по сравнению с активным состоянием (Ма) у грызунов (по Ch.Kayser, 1965)
- •3.1.4. Стратегии теплообмена
- •3.2. Вода и минеральные соли
- •3.2.1. Водно–солевой обмен у водных организмов
- •Показатели осморегуляции у угря Anguilla anguilla в реке и море (по н.С. Строганову, 1962)
- •Концентрация натрия, калия и мочевины в плазме крови водных позвоночных животных, ммоль/л (по к. Шмидт–Ниельсен, 1982)
- •3.2.2. Водный и солевой обмен на суше. Влажные местообитания
- •Устойчивое к дегидратация у разных видов бесхвостых амфибий
- •Экскреция аммиака в онтогенезе наземной жабы Bufo bufo и водной шпорцевой лягушки Xenopus laevis, % от общего азота (по a. Munro, 1953)
- •3.2.3. Водный и солевой обмен на суше. Сухие биотопы и аридные зоны
- •Потери воды с поверхности тела при комнатной (23–250c) температуре
- •Соотношение основных форм экскреции азота у разных видов черепах, % от общего азота (no V. Moyle, 1949)
- •Концентрация ионов Cl– в моче некоторых видов птиц при искусственной солевой нагрузке (по м. Smyth, g. Bartholomew, 1966)
- •3.3. Кислород
- •3.3.1. Газообмен в водной среде
- •Количество кислорода, растворяющегося в воде при разной температуре, мл/л (по a. Krogh, 1941)
- •Относительная поверхность жабр у личинок эфемерид с разной экологией, см2/г (по д.Н. Кашкарову, 1945)
- •Распространенные дыхательные пигменты и примеры животных, у которых они имеются (к. Шмидт–Ниельсен, 1982)
- •Зарядное (р95) и разрядное (p50) напряжение кислорода у экологически отличающихся видов рыб, кПа (но н.С. Строганову, 1962)
- •Динамика числа эритроцитов в норме при гипоксии у двух видов бычков рода Cottus (
- •3.3.2. Газообмен в воздушной среде
- •Динамика параметров красной крови человека при подъеме в горы (по на. Россолевскому, 1951)
- •Динамика параметров красной крови при акклиматизации человека в горах (по н.А. Россолевскому, 1951)
- •3.3.3. Газообмен у ныряющих животных
- •Кислородные запасы в органами ныряющих животных и человека, см3
- •3.4. Свет
- •3.4.1. Биологическое действие различных участков спектра солнечного излучения
- •3.4.2. Свет и биологические ритмы
- •3.4.3. Физиологическая регуляция сезонных явлений
- •3.5. Общие принципы адаптации на уровне организма
- •3.5.1. Правило оптимума
- •3.5.2. Комплексное воздействие факторов. Правило минимума.
- •3.5.3. Правило двух уровней адаптации
- •Глава 4. Экосистемы. Функционирование, история возникновения и классификация природных экосистем
- •4.1. Функционирование экосистем
- •4.1.1.Энергия в экосистемах. Жизнь как термодинамический процесс
- •4.1.2. Энергия и продуктивность экосистем
- •4.1.3. Строительная роль пищи
- •4.1.4. Круговорот элементов в экосистеме
- •Годовой водный баланс Земли (по м.И. Львовичу)
- •Активность водообмена (по м.И. Львовичу)
- •4.1.5. Равновесие и устойчивость экосистем
- •4.1.6. История и происхождение природных экосистем
- •Принципы классификации природных экосистем
- •Глава 5. Учение о биосфере
- •5.1. Понятие «биосфера»
- •5.2. Строение биосферы
- •5.3. Вещество биосферы
- •5.4. Живое вещество: видовой состав и масса
- •5.5. Состав живых организмов
- •5.6. Основные свойства и функции живого вещества
- •5.7. Круговорот веществ в биосфере
- •5.7.1. Круговорот углерода
- •5.7.2. Круговорот азота
- •5.7.3. Круговорот кислорода
- •5.7.4. Круговорот серы
- •5.7.5. Круговорот фосфора
- •5.8. Эволюция биосферы
- •5.9. Энергетический баланс биосферы
- •5.10. Биосфера как целостная система
- •5.11. Человек и биосфера
- •5.12. Ноосфера как ступень развития биосферы
- •5.13. Эксперимент «Биосфера-2»
- •Глава 6. Биологическое разнообразие как основное условие устойчивости популяций, сообществ и экосистем
- •6.1. Сохранение биологического разнообразия
- •6.2. Сохранение генофонда планеты. Изменение видового и популяционного состава флоры и фауны
- •6.3. Особо охраняемые природные территории
- •6.4. Принципы охраны природы
- •Часть II экологический кризис и роль науки в его преодолении
- •Глава 7. История взаимоотношений человека и природы
- •7.1. Сходства и различия человека и животных
- •7.2. Становление человека
- •7.3. Эволюция общества в его отношении к природе
- •7.4. Непосредственное единство человека с природой
- •7.5. Охотничье–собирательное общество
- •7.6. Земледельческо–скотоводческое общество
- •7.7. Индустриальное общество
- •Глава 8. Современный экологический кризис и научно–техническая революция
- •8.1. Современные экологические катастрофы
- •8.2. Реальные экологически негативные последствия
- •Природа и происхождение основных веществ, загрязняющих атмосферу
- •8.3. Потенциальные экологические опасности
- •8.4. Комплексный характер экологической проблемы
- •Глава 9. Религиозные и классово–экономические причины экологического кризиса
- •9.1.1. Религиозные причины экологического кризиса
- •9.1.2. Культурные причины экологического кризиса
- •9.1.3. Классово–социальные причины экологического кризиса
- •9.1.4. Социальные аспекты экологического кризиса в ссср
- •9.2. Экологическая этика и экологический гуманизм
- •9.2.1. Агрессивно–потребительский и любовно–творческий типы личности
- •9.2.2. Экологическая и глобальная этика
- •9.2.3. Эволюция гуманизма
- •9.2.4. Принципы экологического гуманизма
- •Часть III
- •Глава 10. Пути и принципы рационального
- •10.2. Итоги международных конференций по устойчивому развитию
- •10.3. Идея устойчивого развития и мысли в.И. Вернадского
- •10.4. Экологические основы рационального использования природных ресурсов
- •10.5. Общие принципы экологоориентированного регулирования использования природных ресурсов
- •10.5.1. Социально–демографическое регулирование природопользования
- •10.5.2. Органы государственного управления природопользованием
- •10.5.3. Экологический менеджмент на предприятии
- •Принципы экологического менеджмента на предприятии
- •10.6. Экономическое регулирование использования природных ресурсов
- •10.6.1. Основные принципы, мероприятия и методы экономического регулирования использования природных ресурсов
- •10.6.2. Экономическое стимулирование рационального природопользования
- •10.6.3. Основные механизмы экономического регулирования использования природных ресурсов
- •10.6.4. Концепция правового регулирования использования природных ресурсов
- •10.6.5. Юридическая ответственность за экологические правонарушения
- •Глава 11. Формирование нового экологического
- •Экологическая этика и экологическая эстетика
- •11.2. Роль экологического образования и воспитания в формировании нового экологического мировоззрения человека Сущность экологического воспитания и образования
- •Этапы построения системы экологического образования и воспитания
- •Концепция «Образование в интересах устойчивого развития» Актуальность концепции «Образование в интересах устойчивого развития»
- •Проблемы практической реализации концепции «Образование в интересах устойчивого развития»
- •Условия создания системы образования в интересах устойчивого развития
- •Глава 12. Особенности устойчивого развития горных территорий. Конкурентноспособность отраслей и сценарии устойчивого развития северо–кавказского федерального округа
- •12.1. Состояние природной среды и тенденции развития горных территорий
- •Горные районы и горная политика. Европейский и мировой опыт
- •России нужна государственная политика развития горных регионов
- •Проблемы устойчивого развития горных территорий
- •12.2. Формирование энерго–экологических механизмов управления в социоприродном комплексе Северо–Кавказского Федерального Округа по критериям устойчивого развития
- •Краткий анализ отдельных видов энергии по критериям устойчивого развития
- •Гидроэнергетические ресурсы Республики Дагестан
- •Роль гидроэнергетики в социально–экономическом развитии Дагестана
- •Нетрадиционные источники энергии
- •Перспективы освоения геотермальных ресурсов Дагестана
- •Природные энергоносители. Нефть и газ
- •Твердые горючие полезные ископаемые. Торф, бурый уголь, горючие сланцы
- •Проблемы
- •12.3. Этнокультурные, экологические и экономические функции народного декоративно–прикладного искусства
- •Развитие традиционных народных художественных промыслов (на примере Дагестана)
- •Отчетные данные предприятий народных художественных промыслов по производству изделий за 2009 г.
- •12.4. Конкурентоспособность отраслей и сценарии развития Северо–Кавказского Федерального Округа
- •Условия реализации сценария устойчивого развития
- •12.5. Бассейно–ландшафтная концепция природопользования горных территорий с малочисленными народами и эколого–экономическое возрождение бассейна р. Терек
- •Сброс в бассейн реки Терека загрязняющих веществ в составе сточных вод
- •12.6. Особенности решения социально–экологических проблем в горных территориях с малочисленными народами (локальные сценарии)
- •Возможные, основные элементы типовой программы устойчивого развития горного района с малочисленным народом
- •IV. Охрана и воспроизводство природных ресурсов:
- •V. Источники экономического роста:
- •12.7. Эколого–экономический район (разработана для экологически кризисного и криминогенного района Республики Дагестан)
- •Заключение (Экологоприемлемый путь развития Северо–Кавказского Федерального Округа)
- •Календарь событий в области экологии (по г.О. Розенбергу, с изменениями и дополнениями)
- •Словарь экологических терминов
- •Полезные сайты:
- •Основы экологии и природопользования
Сезонные изменения содержания воды в теле и устойчивости к охлаждению у личинок жука Synchroa punctata, живущих в древесине дуба (по n. Payne, 1926).
Показатели |
VII |
VIII |
IX |
X |
XI |
XII |
I |
II |
III |
IV |
V |
VI |
Температура, переохлаждения, –0C |
2,0 |
3,5 |
3,8 |
7,8 |
8,8 |
12,0 |
17,0 |
22,0 |
14,2 |
9,8 |
8,2 |
2,8 |
Содержание – воды в теле, % |
– |
54 |
42 |
40 |
32 |
– |
31 |
– |
– |
– |
– |
– |
Биологический смысл такой перестройки обмена заключается в том, что в идеальном случае у животных, приспособленных к разным температурным режимам, уровень обмена при температуре адаптации (т.е. при естественной температуре среды) сохраняется одинаковым. Это явление называют температурной компенсацией. Прямая зависимость обмена от температуры при этом сохраняется, адаптация выражается в изменении «точки отсчета» этой реакции. Однако способность к температурной компенсации у разных видов неодинакова, и в реальных природных условиях мы чаще сталкиваемся с неполной компенсацией, что, однако, не меняет принципиальной направленности адаптации.
Способность различных видов и групп к температурной адаптации неодинакова и чаще всего коррелирует со степенью изменчивости температурных условий в естественных местах обитания вида. Устойчивые температурные адаптации у животных контролируются на уровне целого организма. В экспериментах введение сыворотки крови карпа, адаптированного к низким температурам, другим рыбам (карась, язь) повышало уровень потребления кислорода их мышечной тканью; сыворотка от рыб, адаптированных к высоким температурам, вызывала обратный эффект. У угрей адаптация сердечной деятельности к разным температурам формировалась только у особей с неповрежденным тонусом блуждающего нерва; блокада этого нерва значительно снижала степень компенсации.
Интересны опыты, в которых угрей помещали в длинный узкий сосуд, где создавали различную температуру для головного и хвостового отделов тела. В этих опытах выявилась автономная тканевая температурная адаптация: интенсивность дыхания мышц головного и хвостового отделов определялась температурой соответствующей части тела. Но одновременно было показано, что общий уровень метаболизма всей рыбы (по потреблению кислорода) всегда определялся только температурой головного конца (Н.Precht, 1964; D. Schultze, 1965). Эти примеры показывают возможность химической и нервной регуляции обменных процессов в ходе температурной адаптации.
Элементы терморегуляции. На фоне температурных адаптаций общего типа, «настраивающих» метаболические системы на существование в определенных режимах окружающей температуры, у многих пойкилотермных организмов (особенно у животных) функционируют специализированные адаптивные реакции, лабильно отвечающие на относительно быстрые и кратковременные изменения внешней температуры. В частности, это относится к использованию эндогенного теплообразования для повышения и некоторой стабилизации (хотя бы временной) температуры тела. Многие виды пойкилотермных животных используют тепло, образующееся при работе локомоторной мускулатуры, для создания временной независимости температуры тела, а соответственно и уровня метаболизма от колебаний температуры среды.
Уже говорилось, что многие насекомые во время активного полета демонстрируют высокую и достаточно устойчивую температуру тела. При этом исходное разогревание организма до порога начала активного полета идет за счет внешнего тепла (радиационный обогрев, повышение температуры воздуха). Но ночные бабочки и для «стартового разогрева» используют мускульное тепло. Необходимая для взлета температура тела достигается у них дрожанием крыльев, переходящим затем в активные взмахи. Скорость согревания зависит от внешней температуры, но во всех случаях вибрация крыльев повышает температуру тела, а это, в свою очередь, увеличивает частоту движения крыльев, что быстро доводит температуру до «стартового» уровня 37–39°С; в дальнейшем эта температура удерживается на все время активного полета.
Быстро плавающие рыбы также способны длительно поддерживать высокую температуру тела за счет мускульной активности. У таких хороших пловцов, как тунцы, мышечное тепло аккумулируется в организме благодаря артериовенозным «теплообменникам», расположенным под кожей и препятствующим потере тепла в окружающую среду; выходящие из мышц сосуды тесно соприкасаются с сосудами, идущими от кожи и несущими охлажденную кровь. В результате кровь, идущая в глубину тела, нагревается, а направляющаяся к поверхности – охлаждается. Эффект такого способа консервации тепла выражается в том, что при изменениях температуры воды от 10 до 30°С колебания температуры тела тунца составляют лишь 5°С. Подобная система поддержания температуры тела обнаружена и у некоторых акул (F. Carey, 1966, 1973).
Некоторые змеи используют высвобождающееся при мускульной деятельности тепло для стабилизации температуры вокруг кладки яиц. Наблюдения за самкой питона Python morulus показали, что при внешней температуре 33°С обвившаяся вокруг кладки змея начинала спазматически сокращать мускулатуру, что вело к усилению теплообразования и повышению температуры тела. При снижении температуры частота сокращений увеличивалась. В диапазоне от 33 до 25,5°С этот механизм эффективно поддерживал температуру кладки. Аналогичное поведение описано и для других видов питонов. В частности, наблюдения за самками ромбического питона Morelia spilota, которым были имплантированы миниатюрные термочувствительные радиопередатчики, показали, что в течение двух месяцев инкубации животные поддерживали относительно постоянную (около 31 °С) температуру тела, используя мышечную деятельность и кратковременные разогревания на солнце утром.
Во всех рассмотренных случаях для поддержания температуры используется тепло, высвобождающееся при прямой сократительной деятельности мышц. Для пойкилотермных животных описан единственный случай применения для этой цели специфических форм мускульных сокращений, не связанных с локомоторной функцией и внешне незаметных.
Речь идет о реакции одиночных пчел на снижение температуры воздуха. Для насекомых характерна «общественная» регуляция температуры в улье путем трепетания крыльев большого числа особей. По существу, это то же использование тепла, сопровождающего прямую сократительную функцию мышц. У одинаковых же пчел обнаружен эффект возрастания потребления кислорода при понижении температуры среды, не связанного с работой крыльев. Эта реакция зарегистрирована в диапазоне температур от 35 до 150С и проявляется только в дневное время на фоне общего повышения уровня обмена. По своему характеру она вполне аналогична реакции химической терморегуляции гомойтермных животных.
При адаптации к действию высокой температуры у пойкилотермных организмов широко распространено использование охлаждающего действия испарения влаги. Этот механизм достаточно обычен для высших растений, регулирующих транспирацию активными реакциями устьиц. На фоне более устойчивых приспособлений (вертикальное расположение листьев, гладкая листовая поверхность, отражающая тепловую радиацию, и т. п.) такой способ охлаждения достаточно эффективно предохраняет листья и, видимо, организм в целом от перегрева.
У животных испарительная функция связана главным образом с органами дыхания. Насекомые, например, достаточно эффективно регулируют температуру тела открыванием и закрыванием дыхалец. Реакция некоторых цикад на низкую температуру среды осуществляется главным образом путем приспособительного поведения, тогда как при перегреве эффективно работает охлаждение с поверхности трахейной системы (J. Hastings, E. Toolson, 1991).
У ряда видов рептилий регистрируется возрастание частоты дыхательных движений при повышении температуры среды и (или) тела сверх определенного порога. Нередко учащение дыхания сопровождается уменьшением его глубины, а также особыми движениями горла и дна ротовой полости. Все это способствует усилению вентиляции рта и верхних дыхательных путей и, как следствие, увеличению теплоотдачи путем испарения влаги со слизистых оболочек. Показано, что у ящериц такая тепловая одышка способствует стабилизации температуры тела и мозга. Эта реакция регулируется с участием гипоталамуса; исходным стимулом для се включения служит определенная степень перегрева организма. Частота дыхательных движений прямо коррелирует со степенью тепловой нагрузки.
Эффективность тепловой одышки неодинакова у разных видов и, вероятно, связана с их экологическими особенностями. Выяснено, например, что у серого варана, обитающего на песчаных дюнах, эта реакция более эффективна, чем у шипохвоста, живущего в каменистой пустыне, при меньшей средней и максимальной температурах субстрата.
Многие виды черепах используют для охлаждения испарение слюны, которой они смачивают поверхность кожи головы и передних конечностей. Реакция слюноотделения регулируется на уровне центральной нервной системы: удаление среднего мозга полностью снимало этот эффект. Некоторые черепахи с тем же успехом используют накопившуюся в мочевом пузыре мочу, обрызгивая ею кожу задних конечностей. Эти реакции проявляются лишь при определенной степени перегрева и заметно затормаживают дальнейшее нарастание температуры тела.
Адаптивное усиление теплоотдачи как механизм предотвращения перегрева организма свойственно преимущественно обитателям жаркого климата. У животных помимо испарительной теплоотдачи адаптации такой направленности могут быть связаны с сосудистой регуляцией. Такая форма свойственна, например, многим ящерицам: расширение поверхностно расположенных сосудов эффективно увеличивает скорость кровотока в них, а соответственно и уровень отдачи тепла в окружающую среду. Эта реакция также регулируется центральной нервной системой, хотя в некоторых случаях (опыты с морскими игуанами) может возникать и локально в перегреваемых участках кожи.
Адаптивное поведение. Для животных характерен еще один способ приспособления к температурным условиям среды – адаптивное поведение. У низших форм оно выражено в виде простых актов положительного или отрицательного термотропизма, а у более высокоорганизованных групп представлено набором достаточно сложных поведенческих реакций. Существуют два главных принципа поведенческой терморегуляции: активный выбор мест с наиболее благоприятным микроклиматом и смена поз.
Способность к выбору мест с оптимальными (в пределах доступного) условиями температуры, влажности и инсоляции отмечена практически у всех исследованных в этом отношении видов. Многие насекомые, пресмыкающиеся и амфибии активно отыскивают освещенные солнцем места для обогрева. Прямая инсоляция для поднятия температуры весьма эффективна: например, прыткая ящерица Lacerta agilis на прямом солнце повышает температуру тела до 33–37°С всего за 20–25 мин.
Получив необходимое «стартовое» количество тепла, животное может перемещаться в тень, некоторое время, поддерживая температуру за счет локомоции. На протяжении активного времени суток такие перемещения в поисках мест прогревания могут повторяться неоднократно; все зависит от погоды и интенсивности мышечной работы. Некоторые животные используют для прогрева тепло, накопленное песком, скалами и т. п. Соответственно способу обогрева рептилий часто подразделяют на гелиотермных (нагреваются на солнце) и геотермных (прогрев от субстрата).
У некоторых водных животных аналогичная задача решается перемещением между более мелководными, хорошо прогреваемыми зонами прибрежных вод, и более глубокими и прохладными участками. Так, манящий краб рода Uca, проявляя положительный фототаксис, выходит на мелководье, когда там вода прогревается солнцем; в жаркое время дня животное уходит на глубину или скрывается в норах.
В эксперименте способность пойкилотермных животных к выбору оптимальных температур отчетливо демонстрируется в приборах, где создается градиент температур. Опыты с рыбами, рептилиями, насекомыми и другими животными показывают специфичность предпочитаемых температур для отдельных видов и популяций. При этом отличия предпочитаемых температур хорошо коррелируют с разницей температурных условий в естественных местообитаниях, показывая совпадение поведенческих реакций с «настройкой» физиологических механизмов температурных адаптации.
В ряде случаев наблюдается довольно тонкое избирание вариантов микроклимата. Так, некоторые пауки в зависимости от погоды меняют высоту расположения ловчих сетей: в холодную погоду – близко от земли, в жаркую – выше. Многие черви, моллюски, ракообразные, многоножки используют естественные укрытия с характерным микроклиматом или делают собственные. Еще более характерно использование укрытий для позвоночных.
Смена поз – существенная форма адаптации теплообмена. При обогреве многие животные не только перемещаются на солнечные участки, но и принимают специфические позы, при которых увеличивается поверхность, прогреваемая прямыми солнечными лучами. Наблюдения Дж. Бартоломью (196S) за морскими игуанами на Галапагосских о–вах показали, что в разных ситуациях эти рептилии используют разные позы обогрева. Рано утром или при облачной погоде игуаны принимают «распростертые» позы, прижимаясь всем телом к субстрату, распластываясь на нем. При этом поверхность, обогреваемая солнцем, максимальна. При начале перегрева ящерицы принимают «приподнятую» позу: передние конечности выпрямлены, голова и шея вытянуты вверх, грудь и передняя часть живота приподняты над субстратом. Тело ориентируется головой к солнцу, как бы «прячась» в собственной тени. При такой позе радиационный обогрев снижен, поверхность тела открыта для обдувания ветром. Регуляция температуры с помощью смены поз для этого вида очень важна, поскольку места обитания игуан – открытые выходы лавовых пород, лишенные растительности и серьезных убежищ.
Эффективность адаптивного терморегуляторного поведения достаточно высока: с его помощью в течение активной части суток может поддерживаться почти постоянная температура тела. Это показано для ряда видов пресмыкающихся и земноводных. Регуляция поведенческих адаптаций осуществляется на уровне центральной нервной системы (у позвоночных животных с участием гипоталамической области промежуточного мозга).
Все формы активных терморегуляторных приспособлений (как физиологических, так и поведенческих) реализуются лишь в довольно узком диапазоне колебаний температуры тела. Вне пределов этого диапазона расположена область температур, переносимых в состоянии оцепенения на базе клеточно–тканевых адаптаций типа толерантности, о чем говорилось выше.
Суммируя сведения об особенностях теплообмена пойкилотермных организмов, подчеркнем принципиальное значение эктотермности этих форм, в основе которой лежит низкий уровень метаболизма. В силу этого температура тела, скорость физиологических процессов и общая активность пойкилотермов прямо зависят от температуры среды. Термические адаптации смягчают эту зависимость, но не снимают ее. Они реализуются главным образом по отношению к средним режимам теплового состояния среды и осуществляются преимущественно на клеточно–тканевом уровне по принципу «настройки» общей термоустойчивости тканей и температурного оптимума ферментов к этим режимам. Приспособления к конкретным, меняющимся температурам носят частный характер и включают отдельные формы физиологических реакций. В результате в широком диапазоне переносимых температур активная жизнедеятельность пойкилотермных организмов ограничена узкими пределами изменений внешней температуры.