- •Молекулярная физика и термодинамика
- •1. Молекулярно-кинетическая теория газов Тема 1. Предварительные сведения
- •1.1. Статистический и термодинамический методы исследования
- •1.2. Характеристики атомов и молекул
- •1.3. Состояние системы. Параметры состояния
- •1.4.Термодинамический процесс
- •Тема 2. Молекулярно-кинетическая теория идеального газа
- •1.5. Идеальный газ как модель газообразного состояния
- •1.6. Уравнение состояния идеального газа
- •1.7. Распределение Максвелла
- •1.8. Барометрическая формула
- •1.9. Распределение Больцмана
- •Тема 3. Реальные газы
- •1.10. Отклонение газов от идеальности.
- •1.11. Потенциальная энергия взаимодействия молекул
- •1.12. Уравнение Ван-дер-Ваальса
- •1.13. Экспериментальные изотермы
- •Тема 4. Жидкое состояние
- •1.14. Строение жидкостей
- •1.15. Поверхностное натяжение
- •1.16. Давление под изогнутой поверхностью жидкости
- •1.17. Капиллярные явления
- •Тема 5. Явления переноса
- •1.18. Средняя длина свободного пробега
- •1.19. Вязкость газов
- •1.20. Теплопроводность газов
- •1.21. Диффузия в газах
- •2. Основы термодинамики Тема 6. Теплота и работа. Первое начало термодинамики
- •2.1. Внутренняя энергия термодинамической системы
- •2.2. Внутренняя энергия идеального газа
- •2.3. Понятие теплоты
- •2.4. Первое начало термодинамики
- •2.5.Работа, совершаемая газом при расширении
- •2.6. Понятие теплоемкости
- •2.7.Теплоемкость при постоянном объеме и теплоемкость при постоянном давлении
- •2.8. Теорема о равномерном распределении энергии по степеням свободы
- •2.9. Теплоемкость многоатомных газов
- •Тема 7. Термодинамическое описание процессов в идеальных газах
- •2.10. Графическое изображение термодинамических процессов.
- •2.11. Изохорический процесс
- •2.12. Изобарический процесс
- •2.13. Изотермический процесс
- •2.14. Адиабатический процесс
- •2.15. Политропические процессы
- •Тема 8. Циклические процессы. Тепловые машины
- •2.16. Обратимые и необратимые процессы.
- •2.17. Циклические процессы. Тепловая машина
- •2.18. Принцип Кельвина
- •2.19. Цикл Карно
- •Тема 9. Второе начало термодинамики
- •2.19. Приведенная теплота
- •2.20. Энтропия как функция состояния
- •2.21. Принцип возрастания энтропии
- •2.22. Термодинамические формулировки второго начала термодинамики
- •2.23. Свободная энергия
- •Тема 10. Тепловая теорема Нернста. Третье начало термодинамики
- •2.24. Тепловая теорема Нернста
- •2.25. Термодинамическая вероятность
- •2.26. Флуктуации
- •Тема 11. Фазовые равновесия и фазовые переходы
- •2.27. Понятие фазы в термодинамике.
- •2.28.Диаграммы равновесия фаз
- •2.29. Испарение и конденсация
- •2.30. Плавление и кристаллизация
- •2.31. Уравнение Клапейрона — Клаузиуса
- •2.32. Тройная точка
1.16. Давление под изогнутой поверхностью жидкости
Рассмотрим поверхность жидкости, опирающуюся на некоторый плоский контур (рис. 20,а). Если поверхность жидкости не плоская, то стремление ее к сокращению приведет к возникновению давления, дополнительного к тому, которое испытывает жидкость с плоской поверхностью. В случае выпуклой поверхности это дополнительное давление положительно (рис. 20,б), в случае вогнутой поверхности — отрицательно (рис. 20,в). В последнем случае поверхностный слой, стремясь сократиться, растягивает жидкость.
Рис. 20. Давление под изогнутой поверхностью жидкости
Величина добавочного давления, очевидно, должна возрастать с увеличением коэффициента поверхностного натяжения α и кривизны поверхности. Вычислим добавочное давление для сферической поверхности жидкости. Для этого рассечем мысленно сферическую каплю жидкости диаметральной плоскостью на два полушария (рис. 21). Из-за поверхностного натяжения оба полушария притягиваются друг к другу с силой, равной
Ff = lα = 2πRα.
Эта сила прижимает друг к другу оба полушария по поверхности S = πR2 и, следовательно, обусловливает дополнительное давление
(40)
Кривизна сферической поверхности всюду одинакова и определяется радиусом сферы R. Очевидно, что чем меньше R, тем больше кривизна сферической поверхности. Кривизну произвольной поверхности принято характеризовать так называемой средней кривизной, которая может оказаться различной для разных точек поверхности.
Рис. 21. К вычислению добавочного давления под изогнутой поверхностью жидкости
Средняя кривизна определяется через кривизну нормальных сечений. Нормальные сечением поверхности в некоторой точке называется линия пересечения этой поверхности с плоскостью, проходящей через нормаль к поверхности в рассматриваемой точке. Для сферы любое нормальное сечение представляет собой окружность радиуса R (R — радиус сферы). Величина C = 1/R дает кривизну сферы. В общем случае различные нормальные сечения, проведенные через одну и ту же точку, имеют различную кривизну. В геометрии доказывается, что полусумма обратных радиусов кривизны:
.
(41)
для любой пары взаимно-перпендикулярных нормальных сечений имеет одно и то же значение. Эта величина и есть средняя кривизна поверхности в данной точке.
Радиусы R1 и R2 в формуле (41) – алгебраические величины. Если центр кривизны нормального сечения находится под данной поверхностью, соответствующий радиус кривизны положителен; если центр кривизны лежит над поверхностью, радиус кривизны отрицателен (рис. 22). Таким образом, неплоская поверхность может иметь среднюю кривизну, равную нулю. Для этого нужно, чтобы радиусы кривизны R1 и R2 были одинаковы по величине и противоположны по знаку.
Рис. 22. К определению знака радиуса кривизны поверхности
Для сферы R1 = R2 = R и по формуле (41) C = 1/R. Подставляя это значение в (40), получаем для добавочного давления под сферической поверхностью
Δp = 2Cα. (42)
Как показал Лаплас, формула (42) справедлива для поверхности любой формы, если под C понимать среднюю кривизну поверхности в той точке, под которой определяется дополнительное давление. Подставив в (42) выражение (41) для средней кривизны, получим формулу для добавочного давления под произвольной поверхностью:
(43)
Она называется формулой Лапласа.
