
- •Молекулярная физика и термодинамика
- •1. Молекулярно-кинетическая теория газов Тема 1. Предварительные сведения
- •1.1. Статистический и термодинамический методы исследования
- •1.2. Характеристики атомов и молекул
- •1.3. Состояние системы. Параметры состояния
- •1.4.Термодинамический процесс
- •Тема 2. Молекулярно-кинетическая теория идеального газа
- •1.5. Идеальный газ как модель газообразного состояния
- •1.6. Уравнение состояния идеального газа
- •1.7. Распределение Максвелла
- •1.8. Барометрическая формула
- •1.9. Распределение Больцмана
- •Тема 3. Реальные газы
- •1.10. Отклонение газов от идеальности.
- •1.11. Потенциальная энергия взаимодействия молекул
- •1.12. Уравнение Ван-дер-Ваальса
- •1.13. Экспериментальные изотермы
- •Тема 4. Жидкое состояние
- •1.14. Строение жидкостей
- •1.15. Поверхностное натяжение
- •1.16. Давление под изогнутой поверхностью жидкости
- •1.17. Капиллярные явления
- •Тема 5. Явления переноса
- •1.18. Средняя длина свободного пробега
- •1.19. Вязкость газов
- •1.20. Теплопроводность газов
- •1.21. Диффузия в газах
- •2. Основы термодинамики Тема 6. Теплота и работа. Первое начало термодинамики
- •2.1. Внутренняя энергия термодинамической системы
- •2.2. Внутренняя энергия идеального газа
- •2.3. Понятие теплоты
- •2.4. Первое начало термодинамики
- •2.5.Работа, совершаемая газом при расширении
- •2.6. Понятие теплоемкости
- •2.7.Теплоемкость при постоянном объеме и теплоемкость при постоянном давлении
- •2.8. Теорема о равномерном распределении энергии по степеням свободы
- •2.9. Теплоемкость многоатомных газов
- •Тема 7. Термодинамическое описание процессов в идеальных газах
- •2.10. Графическое изображение термодинамических процессов.
- •2.11. Изохорический процесс
- •2.12. Изобарический процесс
- •2.13. Изотермический процесс
- •2.14. Адиабатический процесс
- •2.15. Политропические процессы
- •Тема 8. Циклические процессы. Тепловые машины
- •2.16. Обратимые и необратимые процессы.
- •2.17. Циклические процессы. Тепловая машина
- •2.18. Принцип Кельвина
- •2.19. Цикл Карно
- •Тема 9. Второе начало термодинамики
- •2.19. Приведенная теплота
- •2.20. Энтропия как функция состояния
- •2.21. Принцип возрастания энтропии
- •2.22. Термодинамические формулировки второго начала термодинамики
- •2.23. Свободная энергия
- •Тема 10. Тепловая теорема Нернста. Третье начало термодинамики
- •2.24. Тепловая теорема Нернста
- •2.25. Термодинамическая вероятность
- •2.26. Флуктуации
- •Тема 11. Фазовые равновесия и фазовые переходы
- •2.27. Понятие фазы в термодинамике.
- •2.28.Диаграммы равновесия фаз
- •2.29. Испарение и конденсация
- •2.30. Плавление и кристаллизация
- •2.31. Уравнение Клапейрона — Клаузиуса
- •2.32. Тройная точка
Молекулярная физика и термодинамика
1. Молекулярно-кинетическая теория газов Тема 1. Предварительные сведения
1.1. Статистический и термодинамический методы исследования
Молекулярная физика представляет собой раздел физики, изучающий строение и свойства вещества, исходя из так называемых молекулярно-кинетических представлений. Согласно этим представлениям, любое тело – твердое, жидкое или газообразное – состоит из большого количества весьма малых обособленных частиц – молекул (атомы можно рассматривать как одноатомные молекулы). Молекулы всякого вещества находятся в беспорядочном, хаотическом, не имеющем какого-либо преимущественного направления движении. Его интенсивность зависит от температуры вещества. Такое хаотичное движение молекул называют тепловым движением.
Непосредственным доказательством существования хаотического движения молекул служит броуновское движение. Это явление заключается в том, что весьма малые (видимые только в микроскоп) взвешенные в жидкости частицы всегда находятся в состоянии непрерывного беспорядочного движения, которое не зависит от внешних причин и оказывается проявлением внутреннего движения вещества. Броуновские частицы совершают движение под влиянием беспорядочных ударов молекул.
Молекулярно-кинетическая теория возникла в XIX веке и позволила теоретически обобщить накопленные к тому времени экспериментальные факты. Эта теория базируется на трех основных положениях (постулатах):
все тела состоят из частиц: атомов, молекул и ионов;
частицы находятся в непрерывном хаотическом движении (тепловом);
частицы взаимодействуют друг с другом путём абсолютно упругих столкновений.
При описании явлений методами молекулярно-кинетической теории не рассматриваются химические реакции между атомами и молекулами. Различия между атомами и молекулами так же не делается, атомы рассматриваются как одноатомные молекулы. Теория, построенная на основе этих постулатов, является математической моделью реальности, которую можно использовать при соблюдении некоторых условий.
Молекулярно-кинетическая теория ставит себе целью истолковать те свойства тел, которые непосредственно наблюдаются на опыте (давление, температуру и т. п.), как суммарный результат действия молекул. При этом она пользуется статистическим методом, интересуясь не движением отдельных молекул, а лишь такими средними величинами, которые характеризуют движение огромной совокупности частиц. Отсюда другое ее название – статистическая физика.
Материальный объект (тело), состоящее из большого количества частиц, называется макроскопической системой или просто макросистемой.
Молекулярно-кинетическая теория изучает свойства макросистем, оперируя усредненными параметрами молекул (микроскопическими параметрами): средняя длина свободного пробега, средняя энергия, приходящаяся на одну молекулу, средний эффективный диаметр молекулы, средняя скорость движения молекул.
Исторически первой моделью, построенной на основе молекулярно-кинетической теории, явилась модель идеального газа. Идеальный газ – математическая модель газа, в которой предполагается, что:
1) потенциальной энергией взаимодействия молекул можно пренебречь по сравнению с их кинетической энергией, молекулы взаимодействуют только при столкновениях;
2) суммарный объём молекул газа пренебрежимо мал (молекулы газа рассматриваются как материальные точки);
3) между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги;
4) время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями.
В расширенной модели идеального газа частицы, из которого он состоит, имеют форму упругих сфер или эллипсоидов, что позволяет учитывать энергию не только поступательного, но и вращательно-колебательного движения, а также не только центральные, но и нецентральные столкновения частиц.
Изучением различных свойств тел и изменений состояния вещества занимается также термодинамика. Однако в отличие от молекулярно-кинетической теории термодинамика изучает макроскопические свойства тел и явлений природы, не интересуясь их микроскопической картиной. Не вводя в рассмотрение молекулы и атомы, не входя в микроскопическое рассмотрение процессов, термодинамика позволяет делать целый ряд выводов относительно их протекания.
В отличие от молекулярно-кинетической теории, термодинамика оперирует макроскопическими параметрами, измеряемыми на опыте: температура, давление, масса, объем.
В основе термодинамики лежит несколько фундаментальных законов (называемых началами термодинамики), установленных на основании обобщения большой совокупности опытных фактов. В силу этого выводы термодинамики имеют весьма общий характер.
Подходя к рассмотрению изменений состояния вещества с различных точек зрения, термодинамика и молекулярно-кинетическая теория взаимно дополняют друг друга, образуя по существу одно целое. Задачей молекулярной физики и термодинамики является выявление взаимосвязи макроскопических и микроскопических параметров системы.