
- •Физические основы механики
- •1. Предмет физики. Основные понятия механики и физики
- •1.1. Предмет физики. Методы физического исследования.
- •1.2. Системы измерения физических величин.
- •1.3. Понятия пространства и времени, их относительность.
- •2.Кинематика материальной точки
- •2.1. Основная задача кинематики
- •2.2. Система отсчета. Траектория движения точки.
- •2.3. Декартова прямоугольная система координат
- •2.4. Перемещение. Пройденный путь
- •2.5. Скорость, ускорение, единицы их измерения.
- •2.6.Прямолинейное движение.
- •2.7. Относительность механического движения. Преобразования Галилея
- •2.8. Криволинейное движение
- •2.9. Движение точки по окружности
- •2.10. Связь между угловыми и линейными характеристиками вращательного движения
- •3. Динамика материальной точки и поступательного движения твердого тела
- •3.1. Основные понятия динамики. Сила, масса, импульс
- •3.2.Первый закон Ньютона
- •3.3. Второй закон Ньютона
- •3.4. Третий закон Ньютона
- •3.5. Принцип относительности Галилея
- •3.6. Постулаты специальной теории относительности
- •3.7. Закон сохранения импульса
- •3.8. Теорема о движении центра масс
- •3.9. Физические поля и физические взаимодействия
- •3.10. Неинерциальные системы отсчета. Силы инерции
- •3.11.Центробежная сила инерции
- •3.12. Закон всемирного тяготения
- •3.13.Сила тяжести и вес
- •3.14.Законы движения планет Кеплера
- •3.15. Механическая работа
- •3.16. Мощность
- •3.17. Кинетическая энергия
- •2.18. Потенциальная энергия
- •3.19. Закон сохранения механической энергии
- •3.20. Диссипативные силы. Закон сохранения энергии
- •3.21. Центральный удар шаров
- •4. Динамика вращательного движения
- •4.1. Модель абсолютно твердого тела
- •4.2. Момент инерции
- •4.3. Момент силы
- •4.4. Момент импульса
- •4.5. Основное уравнение динамики вращательного движения
- •4.6. Закон сохранения момента импульса
- •4.7. Гироскоп
- •4.8. Кинетическая энергия вращения
- •5. Механические свойства жидкостей и твердых тел
- •5.1. Давление в жидкости и газе.
- •5.2. Давление при наличии объемных сил.
- •5.3. Течение жидкости. Трубки тока.
- •5.4. Уравнение Бернулли. Формула Торичелли
- •5.5. Ламинарное и турбулентное течение. Число Рейнольдса.
- •5.6. Движение тел в жидкостях и газах
- •5.7. Закон Стокса
- •5.8. Подъемная сила
- •5.9. Упругие и пластические деформации
- •5.10. Продольное растяжение (или одностороннее сжатие)
- •5.11. Деформация сдвига
- •5.12. Кручение круглого стержня
- •5.13. Энергия упругой деформации
- •6. Колебания
- •6.1.Гармонические колебания
- •6.2. Дифференциальное уравнение гармонических колебаний
- •6.3. Пружинный маятник
- •6.4. Математический маятник
- •6.5. Физический маятник
- •6.6. Энергия гармонических колебаний
- •6.7. Затухающие колебания
- •6.8.Вынужденные колебания
1.3. Понятия пространства и времени, их относительность.
Механика — часть физики, которая изучает закономерности механического движения и причины, вызывающие или изменяющие это движение.
Механическое движение — это изменение с течением времени взаимного расположения тел или их частей.
Развитие механики как науки начинается с III в. до н. э., когда древнегреческий ученый Архимед (287—212 до н. э.) сформулировал закон равновесия рычага и законы равновесия плавающих тел. Основные законы механики экспериментально установлены итальянским физиком и астрономом Г. Галилеем (1564-1642). Английский ученый И. Ньютоном (1643—1727) в своем знаменитом труде «Математические начала натурально философии» дал теоретическое обобщение накопленных к тому времени экспериментальных фактов и сформулировал основные законы механики.
Механика Галилея — Ньютона называется классической механикой. В ней изучаются законы движения макроскопических тел, скорости которых малы по сравнению со скоростью света в вакууме. Законы движения макроскопических тел со скоростями, сравнимыми со скоростью с, изучаются релятивистской механикой, основанной на специальной теории относительности, сформулированной А.Эйнштейном (1879 — 1955). Для описания движения микроскопических тел (отдельные атомы и элементарные частицы) законы классической механики неприменимы — они заменяются законами квантовой механики.
Мы будем рассматривать движение макроскопических тел со скоростями, значительно меньшими скорости с. В классической механике общепринята концепция пространства и времени, разработанная И. Ньютоном и господствовавшая в естествознании на протяжении XVII—XIX вв. Механика Галилея — Ньютона рассматривает пространства и время как объективные формы существования материи, но в отрыве друг от друга и от движения материальных тел, что соответствовало уровню знаний того времени.
Абсолютное пространство — в классической механике — трёхмерное евклидово пространство, в котором выполняется принцип относительности и преобразования Галилея.
Евклидово пространство – это пространство, в котором выполняется теорема Пифагора в том виде, в каком она изучается в средней школе.
Абсолютное время – «истинное математическое время» ньютоновской механики, которое, по определению И. Ньютона, «само по себе и по самой своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно, и иначе называется длительностью»
Пространство и время в классической механике – понятия неопределяемые. Все рассуждения по поводу пространства и времени в классической механике являются объяснениями, но не определениями в математическом смысле. Иногда встречается следующая формулировка:
все физические процессы протекают в пространстве и во времени;
время – порядок последовательности;
пространство – порядок положения.
При изучении механики мы будем рассматривать следующие идеализированные объекты.
Материальная точка - тело, размерами которого в условиях данной задачи можно пренебречь. Материальная точка имеет массу, но не имеет геометрических размеров.
Абсолютно твердое тело – тело, деформацией которого в условиях данной задачи можно пренебречь. Абсолютно твердое тело можно рассматривать как систему материальных точек, жестко связанных между собой.
Абсолютно упругое тело – тело, которое после прекращения внешнего силового воздействия полностью восстанавливает свои первоначальные размеры и форму.
Абсолютно неупругое тело – тело, которое после прекращения внешнего силового воздействия полностью сохраняет деформированное состояние, вызванное этим воздействием.