- •Физические основы механики
- •1. Предмет физики. Основные понятия механики и физики
- •1.1. Предмет физики. Методы физического исследования.
- •1.2. Системы измерения физических величин.
- •1.3. Понятия пространства и времени, их относительность.
- •2.Кинематика материальной точки
- •2.1. Основная задача кинематики
- •2.2. Система отсчета. Траектория движения точки.
- •2.3. Декартова прямоугольная система координат
- •2.4. Перемещение. Пройденный путь
- •2.5. Скорость, ускорение, единицы их измерения.
- •2.6.Прямолинейное движение.
- •2.7. Относительность механического движения. Преобразования Галилея
- •2.8. Криволинейное движение
- •2.9. Движение точки по окружности
- •2.10. Связь между угловыми и линейными характеристиками вращательного движения
- •3. Динамика материальной точки и поступательного движения твердого тела
- •3.1. Основные понятия динамики. Сила, масса, импульс
- •3.2.Первый закон Ньютона
- •3.3. Второй закон Ньютона
- •3.4. Третий закон Ньютона
- •3.5. Принцип относительности Галилея
- •3.6. Постулаты специальной теории относительности
- •3.7. Закон сохранения импульса
- •3.8. Теорема о движении центра масс
- •3.9. Физические поля и физические взаимодействия
- •3.10. Неинерциальные системы отсчета. Силы инерции
- •3.11.Центробежная сила инерции
- •3.12. Закон всемирного тяготения
- •3.13.Сила тяжести и вес
- •3.14.Законы движения планет Кеплера
- •3.15. Механическая работа
- •3.16. Мощность
- •3.17. Кинетическая энергия
- •2.18. Потенциальная энергия
- •3.19. Закон сохранения механической энергии
- •3.20. Диссипативные силы. Закон сохранения энергии
- •3.21. Центральный удар шаров
- •4. Динамика вращательного движения
- •4.1. Модель абсолютно твердого тела
- •4.2. Момент инерции
- •4.3. Момент силы
- •4.4. Момент импульса
- •4.5. Основное уравнение динамики вращательного движения
- •4.6. Закон сохранения момента импульса
- •4.7. Гироскоп
- •4.8. Кинетическая энергия вращения
- •5. Механические свойства жидкостей и твердых тел
- •5.1. Давление в жидкости и газе.
- •5.2. Давление при наличии объемных сил.
- •5.3. Течение жидкости. Трубки тока.
- •5.4. Уравнение Бернулли. Формула Торичелли
- •5.5. Ламинарное и турбулентное течение. Число Рейнольдса.
- •5.6. Движение тел в жидкостях и газах
- •5.7. Закон Стокса
- •5.8. Подъемная сила
- •5.9. Упругие и пластические деформации
- •5.10. Продольное растяжение (или одностороннее сжатие)
- •5.11. Деформация сдвига
- •5.12. Кручение круглого стержня
- •5.13. Энергия упругой деформации
- •6. Колебания
- •6.1.Гармонические колебания
- •6.2. Дифференциальное уравнение гармонических колебаний
- •6.3. Пружинный маятник
- •6.4. Математический маятник
- •6.5. Физический маятник
- •6.6. Энергия гармонических колебаний
- •6.7. Затухающие колебания
- •6.8.Вынужденные колебания
3.20. Диссипативные силы. Закон сохранения энергии
При наличии неконсервативных сил полная механическая энергия системы не сохраняется. Неконсервативными, в частности, являются силы трения и силы сопротивления среды. Работа этих сил, как правило, отрицательна. Поэтому при наличии сил трения и сил сопротивления среды полная механическая энергия системы уменьшается, переходя во внутреннюю энергию тел, что приводит к их нагреванию. Такой процесс называется диссипацией энергии (латинское слово «диссипация» означает «рассеяние»). Силы, приводящие к диссипации энергии, называются диссипативными. Отметим, что неконсервативные силы не обязательно являются диссипативными.
Диссипативными называются такие силы, полная работа которых при любых движениях в замкнутой системе всегда отрицательна.
Диссипативные силы приводят к уменьшению механической энергии системы тел. Но как показывает опыт, при этом происходит возрастание внутренней энергии тел (например, при трении тела нагреваются). Эксперименты показали: на какую величину уменьшится механическая энергия системы тел, на такую же величину возрастет внутренняя энергия этих и окружающих тел, т.е. происходит не бесследное исчезновение механической энергии, а ее переход в эквивалентном количестве во внутреннюю энергию. В природе помимо механической и внутренней энергии существует множество других видов энергии: электрическая, магнитная, ядерная и т.д. И, как показало развитие науки, эти виды энергии могут превращаться друг в друга, но всегда при этих превращениях выполняется условие: уменьшение или увеличение одного вида энергии приводит, соответственно, к возрастанию или уменьшению других в эквивалентном количестве. Это позволило сформулировать закон сохранения энергии:
полная энергия замкнутой системы не меняется со временем, она лишь переходит из одного вида в другой.
Энергия не исчезает бесследно и не возникает из ничего, она превращается из одного вида энергии в другой вид, либо передается от одних тел к другим телам в эквивалентном количестве. При этом суммарное количество энергии остается постоянным.
Закон сохранения энергии имеет всеобщий характер. Он применим ко всем без исключения процессам, происходящим в природе. Полное количество энергии в изолированной системе тел и полей всегда остается постоянным; энергия лишь может переходить из одной формы в другую. Этот факт является проявлением неуничтожимости материи и ее движения.
Взаимодействие тел можно описывать либо с помощью сил, либо с помощью потенциальной энергии как функции координат взаимодействующих частиц. В макроскопической механике применимы оба способа. Первый способ обладает несколько большей общностью, так как он применим и к таким силам (например, силам трения), для которых нельзя ввести потенциальную энергию. Второй же способ применим только в случае консервативных сил. Но в квантовой механике, имеющей дело с явлениями микромира, диссипативных сил нет, и в ней для описания взаимодействия частиц применяется исключительно второй способ. В уравнения движения квантовой механики силы не входят, а входит лишь потенциальная энергия взаимодействующих частиц. Классическая механика рассматривает процессы, происходящие в макроскопическом мире, поэтому мы используем и понятие силы, и понятие потенциальной энергии.
