
- •Физические основы механики
- •1. Предмет физики. Основные понятия механики и физики
- •1.1. Предмет физики. Методы физического исследования.
- •1.2. Системы измерения физических величин.
- •1.3. Понятия пространства и времени, их относительность.
- •2.Кинематика материальной точки
- •2.1. Основная задача кинематики
- •2.2. Система отсчета. Траектория движения точки.
- •2.3. Декартова прямоугольная система координат
- •2.4. Перемещение. Пройденный путь
- •2.5. Скорость, ускорение, единицы их измерения.
- •2.6.Прямолинейное движение.
- •2.7. Относительность механического движения. Преобразования Галилея
- •2.8. Криволинейное движение
- •2.9. Движение точки по окружности
- •2.10. Связь между угловыми и линейными характеристиками вращательного движения
- •3. Динамика материальной точки и поступательного движения твердого тела
- •3.1. Основные понятия динамики. Сила, масса, импульс
- •3.2.Первый закон Ньютона
- •3.3. Второй закон Ньютона
- •3.4. Третий закон Ньютона
- •3.5. Принцип относительности Галилея
- •3.6. Постулаты специальной теории относительности
- •3.7. Закон сохранения импульса
- •3.8. Теорема о движении центра масс
- •3.9. Физические поля и физические взаимодействия
- •3.10. Неинерциальные системы отсчета. Силы инерции
- •3.11.Центробежная сила инерции
- •3.12. Закон всемирного тяготения
- •3.13.Сила тяжести и вес
- •3.14.Законы движения планет Кеплера
- •3.15. Механическая работа
- •3.16. Мощность
- •3.17. Кинетическая энергия
- •2.18. Потенциальная энергия
- •3.19. Закон сохранения механической энергии
- •3.20. Диссипативные силы. Закон сохранения энергии
- •3.21. Центральный удар шаров
- •4. Динамика вращательного движения
- •4.1. Модель абсолютно твердого тела
- •4.2. Момент инерции
- •4.3. Момент силы
- •4.4. Момент импульса
- •4.5. Основное уравнение динамики вращательного движения
- •4.6. Закон сохранения момента импульса
- •4.7. Гироскоп
- •4.8. Кинетическая энергия вращения
- •5. Механические свойства жидкостей и твердых тел
- •5.1. Давление в жидкости и газе.
- •5.2. Давление при наличии объемных сил.
- •5.3. Течение жидкости. Трубки тока.
- •5.4. Уравнение Бернулли. Формула Торичелли
- •5.5. Ламинарное и турбулентное течение. Число Рейнольдса.
- •5.6. Движение тел в жидкостях и газах
- •5.7. Закон Стокса
- •5.8. Подъемная сила
- •5.9. Упругие и пластические деформации
- •5.10. Продольное растяжение (или одностороннее сжатие)
- •5.11. Деформация сдвига
- •5.12. Кручение круглого стержня
- •5.13. Энергия упругой деформации
- •6. Колебания
- •6.1.Гармонические колебания
- •6.2. Дифференциальное уравнение гармонических колебаний
- •6.3. Пружинный маятник
- •6.4. Математический маятник
- •6.5. Физический маятник
- •6.6. Энергия гармонических колебаний
- •6.7. Затухающие колебания
- •6.8.Вынужденные колебания
Физические основы механики
1. Предмет физики. Основные понятия механики и физики
1.1. Предмет физики. Методы физического исследования.
Физика — это наука, изучающая простейшие и вместе с тем наиболее общие закономерности и явлений природы, свойства и строения материи, законы её движения.
В настоящее время известны два вида неживой материи: вещество и поле. К первому виду материи – веществу – относятся атомы, молекулы и все тела, состоящие из них. Второй вид материи образуют гравитационные, электромагнитные и другие поля.
Материя находится в непрерывном движении, под которым понимается всякое изменение вообще. Движение является неотъемлемым свойством материи, которое несотворимо и неуничтожимо, как и сама материя. Материя существует и движется в пространстве и во времени.
Мир состоит из движущейся материи.
Количество материи в изучаемой системе характеризуется массой. Количество движения в изучаемой системе характеризуется энергией. Физику можно охарактеризовать как науку об энергетических процессах в природе.
Основным методом исследования в физике является эксперимент (опыт), т.е. наблюдение исследуемою явления в точно контролируемых условиях, позволяющих следить за ходом исследования и воссоздавать его каждый раз при повторении этих условий.
Для объяснения физических явлений используют гипотезы. Гипотеза – это научное предположение, выдвигаемое для объяснения какого-либо факта или явления и требующее проверки и доказательства. Правильность гипотезы проверяется постановкой соответствующих опытов, путем выяснения согласия следствий, вытекающих из гипотезы, с результатами опытов и наблюдений. Доказанная гипотеза превращается в научную теорию или закон.
Физика — естественная наука. В ее основе лежит экспериментальное исследование явлений природы, а её задача — формулировка законов, которыми объясняются эти явления. Физика сосредоточивается на изучении фундаментальных и простейших явлений и на ответах на простые вопросы: из чего состоит материя, каким образом частицы материи взаимодействуют между собой, по каким правилам и законам осуществляется движение частиц и т. д.
Гипотеза – это научное предположение, выдвигаемое для объяснения какого-либо факта или явления и требующее проверки и доказательства.
Гипотезы проверяются с помощью продуманного эксперимента, в котором явление проявлялось бы в как можно более чистом виде и не осложнялось бы другими явлениями. Анализ данных совокупности экспериментов позволяет сформулировать закономерность. На первых этапах исследований закономерности носят преимущественно эмпирический, феноменологический характер, то есть явление описывается количественно с помощью определённых параметров, характерных для исследуемых тел и веществ. Анализируя закономерности и параметры, физики строят физические теории, которые позволяют объяснить изучаемые явления на основе представлений о строении тел и веществ и взаимодействие между их составными частями. Физические теории, в свою очередь, создают предпосылки для постановки точных экспериментов, в ходе которых в основном определяются рамки их применения. Общие физические теории позволяют формулировки физических законов, которые считаются общими истинами, пока накопления новых экспериментальных результатов не потребует их уточнения.
Физическая теория – это система основных идей, обобщающих опытные данные и отражающих объективные закономерности природы. Физическая теория дает объяснение целой области явлений природы с единой точки зрения.
Таким образом, процесс исследования можно изобразить в виде цепочки: наблюдение – гипотеза – эксперимент – выявление закономерностей – создание теории.
Реальные свойства материальных объектов очень сложны, поэтому в процессе познания необходимо выделять в изучаемых объектах главное, существенное и отвлекаться от всего случайного, второстепенного.
Мысленная операция, в ходе которой главное отделяется от второстепенного, называется абстрагированием. Построенная в результате абстрагирования идеализированная, упрощенная схема явления или объекта называется физической моделью.
Сталкиваясь с конкретной практической ситуацией, исследователь прежде всего создаёт её упрощенную модель, отражающую основные особенности ситуации. Примерами моделей являются материальная точка, нерастяжимая нить, абсолютно твёрдое тело, идеальный газ, точечный заряд и др. Чем проще модель, тем легче описать её математически. Именно это и имеет место в учебных задачах, которые приведены в стандартных задачниках по физике. В большинстве случаев там сразу понятно, о каких явлениях, эффектах идет речь, какие законы соответствуют этим явлениям, и какие, описывающие эти законы формулы, должны быть привлечены для решения задачи. В реальности, однако, зачастую неизвестно, какие из параметров являются существенными, а какие — нет, и только эксперимент подскажет, правильно ли вы рассчитали результат, или он далёк от истины.
Но, только решая учебные задачи, можно научиться «чувствовать ситуацию», овладеть навыками самостоятельной работы, то есть — стать грамотным специалистом.
Любая физическая модель имеет ограниченный характер и пригодна лишь для приближенного описания явления и объекта.