- •1.1. Образование силы тяги
- •1.2. Классификация и обозначение серий тепловозов и дизель-поездов
- •1.3. Назначение основных систем тепловоза
- •1.4. Особенности конструкции тепловоза
- •2.2. Основные понятия и определения
- •2.3. Четырехтактный двигатель
- •2.5. Термодинамические циклы двс
- •2.7. Тепловой баланс и характеристики дизелей
- •2.8. Работа дизеля в условиях эксплуатации
- •3.1. Поддизельная рама и блок цилиндров
- •3.2. Коленчатый вал и его подшипники
- •3.4. Шатунно-поршневая группа дизеля
- •3.5. Турбокомпрессоры и воздуходувки
- •4.1. Топливная система общие сведения
- •4.2. Топливоподающая аппаратура
- •5.1. Масляная система и ее оборудование
- •5.3. Приводы вентиляторов
- •Оглавление
2.2. Основные понятия и определения
Совокупность термодинамических процессов, происходящих в цилиндре в определенной последовательности, называется рабочим циклом, который повторяется во время работы двигателя.
По способу образования смеси топлива с воздухом рабочие циклы двигателей бывают с внешним и внутренним смесеобразованием.
В рабочем цикле с внешним смесеобразованием подготовка смеси воздуха с топливом происходит вне цилиндра, и наполнение его производится готовой горючей смесью. К таким двигателям относятся
карбюраторные двигатели, работающие на бензине, газовые двигатели, а также двигатели с впрыском топлива во впускной трубопровод, которое легко испаряется и хорошо перемешивается с воздухом при обычных условиях. Подготовленная горючая смесь воспламеняется в цилиндре при помощи электрической искры. Вследствие быстрого сгорания смеси в цилиндре резко повышаются температура и давление, под воздействием которого происходит перемещение поршня в цилиндре. В процессе расширения нагретые до высокой температуры газы совершают полезную работу. Давление, а вместе с ним и температура газов в цилиндре понижаются. После расширения следует выпуск, т. е. очистка цилиндра от продуктов сгорания, и рабочий цикл повторяется.
Рабочий цикл с внутренним смесеобразованием происходит только внутри цилиндра двигателя. Рабочий цилиндр заполняется не смесью, а воздухом (впуск), который и подвергается сжатию. В конце процесса сжатия в цилиндр через форсунку под большим давлением впрыскивается топливо в виде мелко распыленного факела. При этом происходит перемешивание его с горячим воздухом. Начинается интенсивное испарение топлива, вследствие чего образуется топливовоздушная смесь, которая самовоспламеняется. Впрыск топлива во избежание преждевременной вспышки происходит только в конце сжатия. После сгорания топлива следует процесс расширения и очистки цилиндра от продуктов сгорания (выпуск). Для двигателей с внутренним смесеобразованием могут быть использованы все виды жидкого и газообразного топлива. Двигатели, в которых воспламенение топлива происходит в результате высокого сжатия воздуха, называются по имени изобретателя этого двигателя — немецкого ученого Рудольфа Дизеля — дизелями.
Объем внутренней полости цилиндра при положении поршня в ВМТ называется объемом камеры сгорания, или камеры сжатия, и обозначается Кс.
Объем, описываемый поршнем при перемещении от ВМТ до НМТ, называется рабочим объемом цилиндра и обозначается Кл.
Объем над поршнем, находящимся в НМТ, называется полным объемом цилиндра и обозначается Уа:
Отношение полного объема цилиндра к объему камеры сгорания называется степенью сжатия и обозначается £:
с = К = Ун + к Ко кс
Следовательно, степень сжатия есть безразмерное число, показывающее, во сколько раз полный объем цилиндра больше объема камеры сгорания. Степень сжатия двигателей с внешним смесеобразованием находится в пределах 5...8, дизелей — 12... 18.
2.3. Четырехтактный двигатель
Цилиндр двигателя закрыт крышкой, в которой располагаются клапаны для впуска свежего заряда и клапаны выпуска газов. Клапаны удерживаются в закрытом состоянии пружинами и давлением в цилиндре при процессах сжатия, сгорания и расширения. Открытие клапанов в нужные моменты производится газораспределительным механизмом.
Газораспределительный механизм состоит из рычагов, штанг и толкателей, на которые воздействуют кулачки распределительного вала.
Распределительный вал приводится в движение от коленчатого вала двигателя и имеет вдвое меньшую частоту вращения, чем коленчатый вал, вследствие чего каждый клапан открывается один раз за два оборота коленчатого вала. Взаимосвязь газораспределительного механизма с коленчатым валом находится в определенной механической зависимости. Эта зависимость устанавливается заводом—изготовителем двигателя и изображается диаграммой фаз (углов) газораспределения.
Диаграмма фаз газораспределения — паспортная характеристика определенного типа двигателя. Она на графике указывает фазы (углы) положений колена коленчатого вала, при которых происходят изменения термодинамического процесса в наиболее экономичном режиме в цилиндре двигателя. Диаграмма фаз газораспределения является руководящим документом проверки и регулировки поршневого двигателя внутреннего сгорания как при сборке в процессе изготовления, так и при ремонте двигателя.
Изменение давления рабочего тела в цилиндре двигателя за рабочий цикл, который фиксируется специальным прибором — индикатором — на диаграммной бумаге в координатах давления Р и рабочего объема КЛ, называется индикаторной диаграммой.
Рассмотрим термодинамический процесс рабочего цикла в четырехтактном двигателе (рис. 6.5).
Фаза ф;_2 — это угол, описываемый коленом коленчатого вала, при котором клапан впуска открыт. На индикаторной диаграмме этот процесс изображен линией 1—2 — процесс всасывания свежего заряда.
Фаза ф2-3 — это угол, описываемый коленом коленчатого вала, при котором оба клапана закрыты. На
индиикаторной диаграмме наблюдается процесс сжатия свежего заряда, при этом температура его достигает 500... 700 °С.
Фаза у3_4 — это угол, описываемый коленом коленчатого вала при закрытых клапанах впуска и выпуска. Точка 3 находится вблизи ВМТ. С этого момента в цилиндр двигателя подается топливо в мелкораспыленном виде, которое активно (при 7 = 500...700°С) испаряется, воспламеняется и сгорает. Этот процесс длится тысячные доли секунды. В цилиндре резко возрастают температура (»1700°С) и давление (Р^ образовавшихся газов, вследствие чего колено коленчатого вала успевает пройти ВМТ, и сила, равная произведению давления газов на площадь поршня, раскручивает коленчатый вал. Этот процесс расширения газов называют рабочим ходом поршня, и он заканчивается при положении колена коленчатого вала в точке 4. Фаза ц>4_5 — это угол, описываемый коленом коленчатого вала, при котором открыт клапан выпуска. На индикаторной диаграмме этот процесс — выпуск отработавших газов — изображен линией 4—5. В позиции колена коленчатого вала 5 клапан выпуска закрывается, а клапан впуска открывается. Этим завершается рабочий цикл и начинается следующий. Весь рабочий цикл совершился за четыре такта, поэтому такой двигатель называют четырехтактным.
Создание комбинированных двигателей явилось новым этапом в развитии ДВС. Цель создания комбинированных двигателей — получение более экономичного и мощного двигателя при малых его габаритах. Потребность в таких двигателях особенно велика на железнодорожном транспорте. Увеличение мощности двигателя при тех же габаритах осуществляется за счет компрессорного наддува. В комбинированном двигателе в качестве компрессорных машин используются почти все виды компрессоров, а в качестве расширительной машины применяется только газовая турбина. Благодаря наддуву в цилиндры подается на каждый рабочий цикл больше воздуха, чем при всасывании, что дает возможность сжигать большее количество топлива. Это позволяет получать при одинаковых с обычным дизелем размерах цилиндров и той же частоте вращения вала большую мощность.
При сжатии в нагнетателе воздух нагревается, его удельный объем возрастает, что значительно уменьшает воздушный заряд в цилиндре; поэтому в дизелях со средним и высоким наддувом обязательно применяют охлаждение наддувочного воздуха перед поступлением его в цилиндры.
Охлаждение воздуха на каждые 10 °С дает увеличение мощности дизеля на 3...4% и снижение удельного расхода топлива примерно на 1,5...2,0 г/(кВт-ч). Экономичность комбинированного двигателя с наддувом повышается также вследствие увеличения механического КПД и дополнительного использования теплоты отработавших газов. Индикаторная диаграмма комбинированного четырехтактного дизеля с газотурбинным наддувом представлена на рис. 6.6.
В двигателях с наддувом процесс зарядки цилиндра происходит иначе, чем у дизеля без наддува. Турбокомпрессор засасывает воздух при атмосферном давлении Р0 и сжимает его до давления Рк. Сжатый в компрессоре воздух проходит через охладитель и впускной коллектор. На пути от турбокомпрессора до цилиндра давление воздуха снижается от Рк до Ра, поэтому линия давления впуска расположена ниже линии Рк и выше линии Р0.
После заполнения цилиндра воздухом начинается процесс сжатия, который на индикаторной диаграмме изображен кривой 2— 3.
В конце сжатия в цилиндр впрыскивается через форсунку топливо, которое воспламеняется в точке 3. Процесс сгорания показан линией 3—1, а расширение газов происходит по кривой г— 4. В точке 4 открываются выпускные клапаны, и отработавшие газы выталкиваются в газовую турбину при давлении Рт. Газы проходят через направляющий аппарат на лопатки турбины, а затем выбрасываются в атмосферу. На диаграмме линия выпуска газа из цилиндра расположена выше атмосферной и ниже линии наполнения. В четырехтактных двигателях энергии отработавших газов вполне достаточно, чтобы нагнетатель сжимал воздух до давления Рк, более высокого, чем Рт. В результате наддува площадь индикаторной диаграммы, а следовательно, и мощность двигателя значительно возрастают.
Рис. 6.5. Схема работы четырехтактного двигателя и индикаторные
диаграммы:
1— начало открытия впускного клапана; 2 — закрытие впускного клапана; 3 — начало подачи топлива; 4 — начало открытия выпускного клапана; 5 — закрытие выпускного клапана; а—г — такты рабочего цикла; Р0 — атмосферное давление; I — точка максимального давления газов в цилиндре.
Рис. 6.6. Индикаторная диаграмма четырехтактного дизеля с газотурбинным наддувом:
Р0— атмосферное давление; Р„ — давление в период наполнения; Рг — давление в цилиндре в период выпуска; Рк — давление воздуха в наддувочном коллекторе; Кс — объем камеры сжатия; КЛ — рабочий объем; К„ — полный объем цилиндра; 1 — 5 — процесс продувки: 1 — открытие клапанов впуска; 2 — закрытие клапанов впуска; 3 — впрыск топлива в цилиндр; 4 — открытие клапанов выпуска; 5— закрытие клапанов выпуска; I — точка максимального давления газов в цилиндре
2.4. Двухтактный двигатель
В отличие от четырехтактного в двухтактном двигателе очистка рабочего цилиндра от продуктов сгорания и наполнение его свежим зарядом происходят только при движении поршня вблизи НМТ. При этом перезаряд цилиндра осуществляется воздухом, предварительно сжатым специальным компрессором, на привод которого тратится значительная часть энергии дизеля. В процессе газообмена в двухтактных двигателях некоторая часть воздуха неизбежно удаляется из цилиндра вместе с выпускными газами. Качество процесса газообмена (продувки) цилиндра в двухтактном двигателе значительно влияет на мощность и экономичность дизеля. Схемы газообмена (продувки) двухтактных дизелей представлены на рис. 6.7.
На рис. 6.8 показана работа двухтактного двигателя с прямоточной клапанно-щелевой схемой газообмена, конструкция которого имеет следующие особенности:
* впускные окна расположены в нижней части цилиндра, и их высота составляет около 20 % хода поршня;
* выпускные клапаны размещаются в крышке цилиндра и открываются приводом от распределительного вала один раз за один оборот коленчатого вала;
* продувочный компрессор нагнетает воздух в ресивер. Воздух из ресивера очищает цилиндр от продуктов сгорания и наполняет его свежим зарядом.
Рабочий цикл совершается согласно диаграмме фаз газораспределения (рис. 6.9): фаза к—с — сжатие свежего заряда; с — впрыск топлива в цилиндр; с—т — воспламенение топлива в цилиндре, сгорание и расширение газов (рабочий ход); т~п — выпуск газов через открытые клапаны крышки цилиндра, п~Ъ — продувка; п — к — зарядка воздухом цилиндра; к — клапаны выпуска закрываются, начинается сжатие свежего заряда, и цикл повторяется. Рабочий цикл совершился за два такта или за один оборот коленчатого вала. Поэтому такой двигатель и называется двухтактным.
Из рассмотренного рабочего цикла двухтактного двигателя на индикаторной диаграмме видно, что на части хода поршня, когда происходит газообмен в цилиндре, полезная работа не совершается. Объем Кп, соответствующий этой части хода поршня, называется потерянным. Тогда действительный рабочий объем действительная степень сжатия
Рис. 6.7. Схемы газообмена (продувки) двухтактных дизелей:
а — поперечно-щелевая; 6 — щелевая с частичным наддувом; в — прямоточная клапанно-щелевая; г — прямоточная щелевая при встречно движущихся поршнях; 1 — поршень; 2 — клапан; 3 — форсунка
Отношение потерянного объема Уа к геометрическому рабочему объему V/, представляет собой долю потерянного объема на процесс газообмена:
Рис. 6.8. Схема работы двухтактного двигателя с внутренним смесеобразованием и прямоточной клапанно-щелевой схемой газообмена и индикаторной диаграммой:
а — подготовка рабочего хода; 6 — рабочий ход; первый такт: п—к — зарядка; к—с — сжатие; с — подача топлива и его воспламенение; второй такт: с—г — полное сгорание топлива; г—т — расширение; т—п — выпуск газов; п—Ь — продувка цилиндра; 1 — впускной патрубок; 2 — продувочный насос; 3 — поршень; 4 — выпускные клапаны; 5 — форсунка; 6 — выпускной патрубок; 7 — воздушный ресивер; 8 — впускное окно; Ун — рабочий объем; VI — действительный рабочий объем; Уп — потерянный объем; Р0 — атмосферное давление; г — точка максимального давления газов в цилиндре
В двухтактных двигателях у = 10... 38 %. Сравнение рабочих циклов четырех- и двухтактных двигателей показывает, что при одинаковых размерах цилиндров и частотах вращения коленчатого вала мощность двухтактного двигателя значительно больше. Учитывая увеличение числа рабочих циклов в два раза, следовало бы ожидать и двукратного увеличения мощности. В действительности мощность двухтактного двигателя увеличивается приблизительно в 1,5... 1,7 раза вследствие потери части рабочего объема, ухудшения очистки и наполнения, а также необходимости затраты мощности на приведение в действие продувочного насоса.
К преимуществам двухтактных двигателей следует отнести большую равномерность крутящего момента, так как полный рабочий цикл осуществляется при каждом обороте коленчатого вала (а не за два, как в четырехтактных). Этим объясняется более равномерный износ шеек коленчатого вала двухтактного дизеля в эксплуатации.
Рис. 6.9. Диаграмма фаз газораспределения двухтактного двигателя с клапанно-щелевой продувкой цилиндра (дизель 14Д40): п — начало открытия окон продувки; к — закрытие клапанов выпуска; с — начало подачи топлива насосом в цилиндр; т — начало открытия клапанов выпуска газов; Ъ — закрытие поршнем окон продувки; НМТ — положение поршня в нижней мертвой точке; ВМТ — положение поршня в верхней мертвой точке
Существенным недостатком двухтактного процесса по сравнению с четырехтактным является малое время, отводимое на процесс газообмена. Следует учитывать, что очистка цилиндра от продуктов сгорания и наполнение его свежим зарядом более совершенно происходит в четырехтактных двигателях. Кроме того, в двухтактном двигателе температурный уровень поршня, крышки, цилиндра и клапанов выше, чем в четырехтактном.
