Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
фф.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
358.91 Кб
Скачать

Лекция 3. Учет инфляции

Вопросы для рассмотрения:

  1. Инфляция и ее измерения. Индекс потребительских цен.

  2. Номинальная и реальная ставки процентов.

  3. Расчет наращенных сумм в условиях инфляции.

  4. Измерение реальной доходности финансовой операции.

Инфляция – устойчивый рост среднего уровня цен на товары и услуги в экономике. Внешние признаки инфляции – рост цен и, как следствие, снижение покупательной способности денег. В зависимости от уровня инфляции в год выделяют: нормальную (ползучую) – от 3% до 10%; галопирующую – от 10% до 100%; гиперинфляцию – свыше 50% в месяц.

Темпы инфляции определяются с помощью индекса – относительного показателя, характеризующего среднее изменения уровня цен некоторого фиксированного набора товаров и услуг за данный период времени.

Индекс инфляции показывает во сколько раз выросли цены ( ), а темп инфляции показывает, насколько процентов возросли цены (τ), т.е. по своей сути это соответственно темп роста и темп прироста:

= 1 + τ.

Для оценки уровня инфляции используется система индексов цен:

  1. Индивидуальный индекс цены

  2. Общий индекс цен

а) по схеме паше ,

б) По схеме Ласпейреса .

Индекс потребительских цен (ИПЦ) – это показатель международной статистики, регулярно использующийся практически во всех странах мира (CPI – Consumer Price Index), который характеризует динамику затрат на постоянный набор товаров и услуг за счет ценностного фактора.

Расчет ИПЦ в России осуществляется за каждый месяц и нарастающим итогом с начала года (к декабрю прошлого года).

Отечественные исследователи часто расценивают уровень инфляции как темп прироста потребительских цен:

τ = ИПЦ – 100 (%)

ИПЦ оценивает изменение стоимости фактического фиксированного набора товаров и услуг в отчетном периоде по сравнению с его стоимостью в базисном периоде.

Чтобы определить темп инфляции за период t по данным о значении этого показателя за более короткие промежутки рассматриваемого периода необходимо:

  • Перейти от приростного показателя за короткие промежутки к показателям темпа роста цен. Пример: темп инфляции по кварталам: α1 = 4%;  α2 = 3%;  α3 = 2%;  α4 = 5%; определим темп роста цен: 104%, 103%, 102%, 105%;

  • Перейти от темпа роста к коэффициенту роста: К21 = 104/100 = 1,04;  тК22 = 103/100 = 1,03;  К23 = 102/100 = 1,02;  К24 = 105/100 = 1,05;

  • Определить годовой коэффициент роста цен: перемножим коэффициенты за исследуемые периоды:  К2год = 1,147 → ТР2год = 114,7%

  • Темп инфляции за год: ТР2год – 100% = 14,7%

Индекс цен за несколько периодов n, следующих друг за другом, вычисляется по формуле

где i – номер периода; – индекс цен в периоде i; – темп инфляции в периоде i.

Интерпретация:

  1. индекс цен ;

  2. темп роста цен ;

  3. темп прироста цен – уровень инфляции ;

  4. инфляция за год равна произведению индексов цен.

Инфляционные процессы, характерные для экономики многих стран, требуют того, чтобы они учитывались в финансовых расчетах. Особенно необходимо рассчитывать воздействие инфляции при вычислении наращенных сумм и определении действительной ставки процентов.

Определение действительной ставки процентов

Показатели финансовой операции могут быть представлены, как:

  • номинальные, т.е. рассчитанные в текущих ценах;

  • реальные, т.е. учитывающие влияние инфляции, и рассчитанные в сопоставимых ценах базисного периода.

В связи с этим вводится понятие номинальная ставка процента, т.е. ставки с поправкой на инфляцию ( iинф ).

Простые проценты. Наращенная сумма при отсутствии инфляции равна , а ее эквивалент в условиях инфляции равен . Из равенства: получаем: ,

где i – простая ставка процентов, характеризующая требуемую реальную доходность финансовой операции (нетто-ставка); iτ – процентная ставка с поправкой на инфляцию.

Это ставка, скорректированная на инфляцию, называется брутто-ставкой.

Сложные проценты.

Проценты 1 раз в год:

Наращенная сумма при отсутствии инфляции равна , а ее эквивалент в условиях инфляции равен . Из равенства: получаем: из которой можно сравнивать уровни процентной ставки и инфляции, проводить анализ эффективности вложений и устанавливать реальный прирост вложенного капитала.

Проценты m раз в год:

При начислении процентов несколько раз в год:

.

Эти модели позволяют производить учет инфляции и корректировку процентных ставок.

Годовая ставка сложных процентов, обеспечивающая реальную доходность кредитной операции, определяется по формуле Фишера, связывает три показателя:

R – номинальная процентная ставка

α – уровень инфляции 

r – реальная процентная ставка (доходность финансовой операции)

,

,

.

Пример 3.1. Годовой темп инфляции 20%. Банк рассчитывает получить 10% реального дохода в результате предоставления кредитных ресурсов. Какова номинальная ставка, по которой банк предоставит кредит?

(1+R)=(1+0,2)*(1+0,1)

R=0,32=32%

На практике довольно часто довольствуются сравнением i и τ путем вычисления реальной ставки, т.е. уменьшенной ставки доходности на уровень инфляции:

i = (i - τ) / (1 + τ)

Поскольку покупательная способность денег снижается в условиях инфляции, то происходит обесценивание денежных доходов. Поэтому при наращении денег на депозите вкладчик должен сопоставить номинальную процентную ставку, т.е. ставку, указанную в договоре, с величиной индекса потребительских цен.

Вычисление наращенных сумм

Получаем формулу:

или ,

где - уровень инфляции.

Реальная стоимость С суммы S, обесцененная во времени за счет инфляции при индексе цен , рассчитывается по формуле:

Если наращение производится по простой ставке в течение n лет, то . С учетом инфляции реальная стоимость суммы S составит

Для определения реальной покупательской способности, наращенную сумму необходимо привести ее к ценам базового периода:

.

Вследствие начисления процентов происходит увеличение денежных сумм, но их стоимость под влиянием инфляции уменьшается. Поскольку каждая денежная единица обесценивается вследствие инфляции, то в дальнейшем обесцениваются уже обесцененные деньги.

Наращение осуществляется по простым или сложным процентам, но инфляция всегда оценивается по сложному проценту.

Наращенная сумма за n лет с учетом ее обесценивания составит: , здесь множитель наращения, учитывающий темп инфляции.

  • Если темп инфляции больше ставки начисляемых процентов, то полученная наращенная сумма не компенсирует потерю покупательной способности денег. Банковская ставка называется отрицательной.

  • Если темп инфляции меньше ставки начисляемых процентов, то наблюдается реальный рост покупательной способности денег. Банковская ставка называется положительной.

  • Если темп инфляции равен ставке начисляемых процентов, то покупательная способность наращенной суммы равна покупательной способности первоначальной суммы.

Вопросы для самопроверки:

  1. Что такое инфляция? Перечислите виды инфляции.

  2. Что такое ИПЦ?

  3. С какой целью проводят учет инфляции?

  4. Что такое номинальная ставка процента? Чем она отличается от реальной ставки?

  5. Что такое финансовая операция?

  6. Как измерить реальную доходность финансовой операции?