Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
учебное пособие магнетизм декабрь 2011.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
2.21 Mб
Скачать

1.4 Закон Био – Савара – Лапласа и его применение к расчету магнитного поля

Французские физики Ф. Савар и Ж.Б. Био изучали магнитное поле, создаваемое проводниками с постоянным током различной формы. На основании многочисленных опытов они пришли к выводу, что магнитная индукция поля проводника с током пропорциональна силе тока I, зависит от формы и размеров проводника, а также от расположения рассматриваемой точки по отношению к проводнику. Био и Савар пытались получить самый общий закон – для проводника любой формы и любой точки поля. Однако сделать это им не удалось. По их просьбе этой проблемой занялся французский математик П.С. Лаплас. Он высказал важную гипотезу о том, что при наложении магнитных полей справедлив принцип суперпозиции, т.е. принцип независимости действия полей. Если имеется несколько проводников с током, каждый из которых создает в исследуемой точке магнитное поле с индукциями …, то результирующая магнитная индукция будет равна векторной сумме всех : .

Если перейти к малым отрезкам провода с током, то суммирование надо заменить интегрированием и тогда индукция , создаваемая всем проводником с током I, будет равна: где – индукция, создаваемая элементом длины проводника dℓ, интегрирование проводится по всей длине проводника.

Лаплас обобщил экспериментальные результаты Био и Савара в виде дифференциального закона, называемого законом Био – Савара – Лапласа,

п о которому магнитная индукция , создаваемая в некоторой точке А элементом проводника dℓ с током I, определяется формулой

В ыберем произвольную точку А вблизи проводника. Вектор направлен в точке А перпендикулярно плоскости, построенной на векторах и по правилу правого винта, и совпадает с направлением касательной к линии индукции в точке А (пунктирный круг) (рис.1.7). Коэффициент пропорциональности k зависит от выбора системы единиц. В СИ это размерная величина, равная μ0/4π, где μ0 - магнитная постоянная, равная 4π∙10-7 Гн/м.

Таким образом, магнитную индукцию поля, создаваемую в вакууме током I, текущим по проводу конечной длины ℓ и любой формы, можно найти по формуле

1.4.1 Магнитное поле в центре кругового проводника с током

Рассмотрим круговой проводник с ток ом, изображенный на рис.1.8. Все элементы данного проводника dℓ создают в его центре (точке А) магнитные поля одинакового направления – вдоль нормали к площади витка. Поэтому, как и в предыдущем случае, сложение векторов можно заменить сложением их модулей. Элементы dℓ перпендикулярны R и sinα=1. Используя закон Био-Савара-Лапласа, получим:

1.4.2 Магнитное поле прямолинейного проводника с током

Представим себе ток, текущий по тонкому прямому проводу бесконечной длины (рис. 1.9). Возьмем произвольную точку А на расстоянии R от проводника. Согласно правилу правого винта (буравчика), векторы от к аждого элемента тока dℓi имеют одинаковое направление, перпендикулярное плоскости чертежа (на нас).

Поэтому сложение векторов можно заменить сложением их модулей. При суммировании всех будет меняться угол α между r и dℓ, поэтому выберем α в качестве переменной интегрирования. Выразим через α все остальные величины, полагая, что отрезок АD ≈ r из-за малости dℓ. Итак, из треугольника АСЕ выразим r через известное нам расстояние R и переменную α:

По закону Био-Савара-Лапласа получим:

В данном выражении α1 и α2 - значения угла α для крайних точек проводника. Если прямолинейный проводник бесконечно длинный, то α1 = 0, α2 = π. Магнитная индукция в любой точке поля такого проводника с током:

Напомним, что линии магнитной индукции поля прямого тока представляют собой систему охватывающих провод концентрических окружностей.