- •Часть 2 «Электромагнетизм»
- •1 Магнитное поле в вакууме
- •1.1 Магнитное поле и его характеристики
- •Магнитного поля прямолинейного тока и правило правой руки
- •1.2 Закон Ампера
- •1. 3 Рамка с током в однородном магнитном поле
- •1.4 Закон Био – Савара – Лапласа и его применение к расчету магнитного поля
- •1.4.1 Магнитное поле в центре кругового проводника с током
- •1.4.2 Магнитное поле прямолинейного проводника с током
- •1.5 Взаимодействие двух параллельных проводников с током
- •Контрольные вопросы первого уровня
- •Методические указания по решению задач
- •Основные формулы
- •Примеры решения задач
- •Контрольные вопросы второго уровня (сборник задач)
- •Контрольные вопросы третьего уровня (тесты)
- •2.2 Движение заряженной частицы в однородном постоянном электрическом поле
- •2.3 Движение заряженной частицы в однородном постоянном магнитном поле
- •2.4 Практические применения силы Лоренца. Эффект Холла
- •2.5 Закон полного тока для магнитного поля в вакууме (теорема о циркуляции вектора в)
- •2.6 Магнитные поля соленоида и тороида
- •Контрольные вопросы первого уровня
- •Методические указания по решению задач
- •Основные формулы
- •Примеры решения задач
- •Контрольные вопросы второго уровня (сборник задач)
- •Контрольные вопросы третьего уровня (тесты)
- •3 Явление электромагнитной индукции
- •3.1 Поток вектора магнитной индукции. Теорема Гаусса для магнитного поля
- •3.2 Основной закон электромагнитной индукции
- •3.3 Явление самоиндукции
- •3.4 Явление взаимной индукции
- •3.5 Энергия магнитного поля
- •Контрольные вопросы первого уровня
- •Методические указания по решению задач
- •Основные формулы
- •Примеры решения задач
- •Контрольные вопросы второго уровня (сборник задач)
- •Контрольные вопросы третьего уровня (тесты)
- •4 Электромагнитные колебания
- •4.1 Электрический колебательный контур. Формула Томсона
- •4.2 Свободные затухающие колебания. Добротность колебательного контура
- •4.3 Вынужденные электрические колебания. Метод векторных диаграмм
- •4.4 Резонанс напряжений и резонанс токов
- •Контрольные вопросы первого уровня
- •Методические указания по решению задач
- •Основные формулы
- •Примеры решения задач
- •Контрольные вопросы второго уровня (сборник задач)
- •Контрольные вопросы третьего уровня (тесты)
3.3 Явление самоиндукции
Вокруг любого проводника с током существует собственное магнитное поле, которое пронизывает этот проводник. При изменении тока в контуре также меняется и собственный магнитный поток через сам этот контур. Отсюда следует, что в контуре индуцируется э.д.с. и появляется дополнительный индукционный ток. Возникающая в таких случаях э.д.с., называется э.д.с. самоиндукции, а само явление – явлением самоиндукции.
Самоиндукция – это частный случай электромагнитной индукции. В соответствии с законом Био-Савара-Лапласа магнитная индукция В пропорциональна силе тока, вызывающего это поле. Отсюда следует, что полный магнитный поток Фm, сцепленный с контуром, должен быть пропорционален силе тока I в контуре: Фm = LI. Коэффициент пропорциональности L между силой тока и магнитным потоком называется индуктивностью контура. Индуктивность зависит от геометрии контура (от его формы и размеров), а также от магнитной проницаемости окружающей контур среды. Если контур жесткий и поблизости от него нет ферромагнетиков, то его индуктивность – постоянная величина L=const. Единицей измерения индуктивности в СИ является генри (Гн): 1Гн - индуктивность такого контура, у которого при силе текущего в нем тока 1А возникает сцепленный с ним полный магнитный поток, равный 1Вб.
Наиболее значительной индуктивностью обладает катушка индуктивности, состоящая из изолированного проводника, свернутого в спираль. Она используется в качестве одного из основных элементов колебательных контуров, накопителей электрической энергии и источников магнитного поля.
В качестве примера вычислим индуктивность соленоида. Пусть длина соленоида будет во много раз больше диаметра его витков, тогда его можно считать практически бесконечным. При протекании по виткам тока I внутри соленоида появляется однородное магнитное поле, индукция которого равна В = μμ0Ιn, где n- число витков на единицу длины соленоида. Магнитный поток через каждый из витков по отдельности равен Фm1 = ВS, где S – площадь витка. Тогда полный магнитный поток через соленоид составит:
Фm = NФm = nℓBS = nℓμμ0nIS = n2ℓμμ0ΙS
Произведение n·ℓ дает полное число витков соленоида N. Сопоставив полученное выражение с Фm = LI, получим, что индуктивность соленоида L = n2ℓμμ0S = n2μμ0V (где V= ℓ·S – это объем соленоида).
Э
.д.с.
самоиндукции вычисляется следующим
образом:
По правилу Ленца дополнительные токи самоиндукции всегда направлены так, чтобы противодействовать изменениям основного тока в цепи. Это приводит к тому, что установление тока при замыкании цепи (т.е. его возрастание от нуля) и убывание при размыкании происходит не мгновенно, а постепенно. В данной ситуации процессам возрастания и убывания тока препятствует ток самоиндукции и индуктивность контура является мерой его инертности по отношению к изменению тока. При быстром размыкании электрической цепи возникает большая э.д.с. самоиндукции, которая может вызвать пробой воздушного зазора (искру) между контактами выключателя и вывести его из строя.
