- •Часть 2 «Электромагнетизм»
- •1 Магнитное поле в вакууме
- •1.1 Магнитное поле и его характеристики
- •Магнитного поля прямолинейного тока и правило правой руки
- •1.2 Закон Ампера
- •1. 3 Рамка с током в однородном магнитном поле
- •1.4 Закон Био – Савара – Лапласа и его применение к расчету магнитного поля
- •1.4.1 Магнитное поле в центре кругового проводника с током
- •1.4.2 Магнитное поле прямолинейного проводника с током
- •1.5 Взаимодействие двух параллельных проводников с током
- •Контрольные вопросы первого уровня
- •Методические указания по решению задач
- •Основные формулы
- •Примеры решения задач
- •Контрольные вопросы второго уровня (сборник задач)
- •Контрольные вопросы третьего уровня (тесты)
- •2.2 Движение заряженной частицы в однородном постоянном электрическом поле
- •2.3 Движение заряженной частицы в однородном постоянном магнитном поле
- •2.4 Практические применения силы Лоренца. Эффект Холла
- •2.5 Закон полного тока для магнитного поля в вакууме (теорема о циркуляции вектора в)
- •2.6 Магнитные поля соленоида и тороида
- •Контрольные вопросы первого уровня
- •Методические указания по решению задач
- •Основные формулы
- •Примеры решения задач
- •Контрольные вопросы второго уровня (сборник задач)
- •Контрольные вопросы третьего уровня (тесты)
- •3 Явление электромагнитной индукции
- •3.1 Поток вектора магнитной индукции. Теорема Гаусса для магнитного поля
- •3.2 Основной закон электромагнитной индукции
- •3.3 Явление самоиндукции
- •3.4 Явление взаимной индукции
- •3.5 Энергия магнитного поля
- •Контрольные вопросы первого уровня
- •Методические указания по решению задач
- •Основные формулы
- •Примеры решения задач
- •Контрольные вопросы второго уровня (сборник задач)
- •Контрольные вопросы третьего уровня (тесты)
- •4 Электромагнитные колебания
- •4.1 Электрический колебательный контур. Формула Томсона
- •4.2 Свободные затухающие колебания. Добротность колебательного контура
- •4.3 Вынужденные электрические колебания. Метод векторных диаграмм
- •4.4 Резонанс напряжений и резонанс токов
- •Контрольные вопросы первого уровня
- •Методические указания по решению задач
- •Основные формулы
- •Примеры решения задач
- •Контрольные вопросы второго уровня (сборник задач)
- •Контрольные вопросы третьего уровня (тесты)
3.2 Основной закон электромагнитной индукции
Величайший
физик XIX века Майкл Фарадей считал, что
между электрическими и магнитными
явлениями существует тесная взаимосвязь.
А
мпер,
Био и другие ученые выяснили одну сторону
этой взаимосвязи, с которой мы уже
знакомы, а именно – магнитное действие
тока. Фарадей предположил, что если
вокруг проводника с током существует
магнитное поле, то естественно ожидать,
что должно происходить и обратное
явление – возникновение электрического
тока под действием магнитного поля. И
вот в 1831 г. Фарадей публикует статью,
где сообщает об открытии нового явления
– явления электромагнитной индукции.
Опыты Фарадея были чрезвычайно просты. Он присоединял гальванометр G к концам катушки L и приближал к ней магнит (рис.3.2). Стрелка гальванометра отклонялась, фиксируя появление тока в цепи. Ток протекал, пока магнит двигался. При отдалении магнита от катушки гальванометр отмечал появление тока противоположного направления. Аналогичный результат отмечался, если магнит заменяли катушкой с током или замкнутым контуром с током. Движущиеся магнит или проводник с током создают через катушку L переменное магнитное поле. В случае их неподвижности создаваемое ими поле постоянно. Если вблизи замкнутого контура поместить проводник с переменным током, то в замкнутом контуре также возникнет ток. На основе анализа опытных данных Фарадей установил, что ток в проводящих контурах появляется при изменении магнитного потока через площадь, ограниченную этим контуром. Этот ток был назван индукционным. Открытие Фарадея было названо явлением электромагнитной индукции и легло в дальнейшем в основу работы электрических двигателей, генераторов, трансформаторов и подобных им приборов.
Итак, если магнитный поток через поверхность, ограниченную некоторым контуром, изменяется, то в контуре возникает электрический ток. Известно, что электрический ток в проводнике может возникнуть только под действием сторонних сил, т.е. при наличии э.д.с.. В случае индукционного тока э.д.с., соответствующая сторонним силам, называется электродвижущей силой электромагнитной индукции εi.
Дальнейшие исследования индукционного тока в проводящих контурах различной формы и размеров показали справедливость следующего закона Фарадея: Э.д.с. электромагнитной индукции в контуре пропорциональна скорости изменения магнитного потока Фm сквозь поверхность, ограниченную этим контуром:
г
де
к – коэффициент пропорциональности.
Данная э.д.с. не зависит от того, чем
вызвано изменение магнитного потока –
либо перемещением контура в постоянном
магнитном поле, либо изменением самого
поля.
Рассмотрим пример, демонстрирующий данный закон (рис. 3.3). В контуре 1 создается ток силы I1, его можно изменять с помощью реостата R.
Э
тот
ток создает магнитное поле, пронизывающее
контур 2. Если мы будем увеличивать ток
I1, поток Фm
магнитной индукции через контур 2 будет,
изменяясь, расти. Это приведет к появлению
в контуре 2 индукционного тока I2’,
регистрируемого гальванометром G
и направленного противоположно I1.
Если, наоборот, уменьшать I1,
то и поток через контур 2 будет уменьшаться,
что приведет к появлению в нем индукционного
тока I2’’,
направленного так же, как I1.
Как определить направление индукционного тока? Профессор Петербургского университета Э.Х. Ленц в 1833 г. установил, что индукционный ток всегда направлен так, чтобы противодействовать причине, его вызывающей. Это – существенный физический факт, демонстрирующий стремление системы сопротивляться изменению состояния.
Вернемся к рис. 3.3. При увеличении тока I1, т.е. возрастании потока магнитной индукции Фm, направленного вправо, когда dФm/dt >0, в контуре 2 возникает индукционный ток I2’, создающий собственный магнитный поток, направленный влево (данный поток стремится уменьшить Фm). Току I2’ соответствует εi< 0. Мы можем определить направление тока I2’ по правилу правого винта. Если ток в контуре 1 уменьшать, то dФm/dt < 0, и аналогично в контуре 2 возникает εi> 0 и ток I2”, собственный магнитный поток которого направлен так же, как и внешний поток Фm, потому что он стремится поддержать внешний поток постоянным, добавляя его.
Итак, направление индукционного тока определяется правилом Ленца: При всяком изменении магнитного потока сквозь поверхность, ограниченную замкнутым проводящим контуром, в последнем возникает индукционный ток такого направления, что его магнитное поле противодействует изменению магнитного потока.
Обобщением закона Фарадея и правила Ленца является закон Фарадея - Ленца: Электродвижущая сила электромагнитной индукции в замкнутом проводящем контуре численно равна и противоположна по знаку скорости изменения магнитного потока сквозь поверхность, ограниченную контуром:
Это выражение представляет собой основной закон электромагнитной индукции.
При скорости изменения магнитного потока 1Вб/с в контуре индуцируется э.д.с. в 1 В.
П
усть
контур, в котором индуцируется э.д.с.,
состоит не из одного, а из N витков,
например, представляет собой соленоид.
Соленоид – это цилиндрическая катушка
с током, состоящая из большого числа
витков. Так как витки в соленоиде
соединяются последовательно, εi
в данном случае будет равна сумме э.д.с.,
индуцируемых в каждом из витков по
отдельности:
В
еличину
Ψ = ΣΦm
называют потокосцеплением
или полным магнитным потоком. Если
поток, пронизывающий каждый из витков,
одинаков (т.е. Ψ = NΦm),
то в этом случае
Немецкий физик Г. Гельмгольц доказал, что закон Фарадея-Ленца является следствием закона сохранения энергии. Пусть замкнутый проводящий контур находится в неоднородном магнитном поле. Если в контуре течет ток I, то под действием сил Ампера незакрепленный контур придет в движение. Элементарная работа dA, совершаемая при перемещении контура за время dt, будет составлять
dA = IdФm,
где dФm – изменение магнитного потока сквозь площадь контура за время dt. Работа тока за время dt по преодолению электрического сопротивления R цепи равна I2Rdt. Полная работа источника тока за это время равна εIdt. По закону сохранения энергии работа источника тока затрачивается на две названные работы, т.е.
εIdt = IdФm + I2Rdt.
Разделив обе части равенства на Idt, получим
Следовательно, при изменении магнитного потока, сцепленного с контуром, в последнем возникает электродвижущая сила индукции
