- •Часть 2 «Электромагнетизм»
- •1 Магнитное поле в вакууме
- •1.1 Магнитное поле и его характеристики
- •Магнитного поля прямолинейного тока и правило правой руки
- •1.2 Закон Ампера
- •1. 3 Рамка с током в однородном магнитном поле
- •1.4 Закон Био – Савара – Лапласа и его применение к расчету магнитного поля
- •1.4.1 Магнитное поле в центре кругового проводника с током
- •1.4.2 Магнитное поле прямолинейного проводника с током
- •1.5 Взаимодействие двух параллельных проводников с током
- •Контрольные вопросы первого уровня
- •Методические указания по решению задач
- •Основные формулы
- •Примеры решения задач
- •Контрольные вопросы второго уровня (сборник задач)
- •Контрольные вопросы третьего уровня (тесты)
- •2.2 Движение заряженной частицы в однородном постоянном электрическом поле
- •2.3 Движение заряженной частицы в однородном постоянном магнитном поле
- •2.4 Практические применения силы Лоренца. Эффект Холла
- •2.5 Закон полного тока для магнитного поля в вакууме (теорема о циркуляции вектора в)
- •2.6 Магнитные поля соленоида и тороида
- •Контрольные вопросы первого уровня
- •Методические указания по решению задач
- •Основные формулы
- •Примеры решения задач
- •Контрольные вопросы второго уровня (сборник задач)
- •Контрольные вопросы третьего уровня (тесты)
- •3 Явление электромагнитной индукции
- •3.1 Поток вектора магнитной индукции. Теорема Гаусса для магнитного поля
- •3.2 Основной закон электромагнитной индукции
- •3.3 Явление самоиндукции
- •3.4 Явление взаимной индукции
- •3.5 Энергия магнитного поля
- •Контрольные вопросы первого уровня
- •Методические указания по решению задач
- •Основные формулы
- •Примеры решения задач
- •Контрольные вопросы второго уровня (сборник задач)
- •Контрольные вопросы третьего уровня (тесты)
- •4 Электромагнитные колебания
- •4.1 Электрический колебательный контур. Формула Томсона
- •4.2 Свободные затухающие колебания. Добротность колебательного контура
- •4.3 Вынужденные электрические колебания. Метод векторных диаграмм
- •4.4 Резонанс напряжений и резонанс токов
- •Контрольные вопросы первого уровня
- •Методические указания по решению задач
- •Основные формулы
- •Примеры решения задач
- •Контрольные вопросы второго уровня (сборник задач)
- •Контрольные вопросы третьего уровня (тесты)
2.6 Магнитные поля соленоида и тороида
Рассчитаем, применяя теорему о циркуляции, индукцию магнитного поля внутри соленоида. Рассмотрим соленоид длиной l, имеющий N витков, по которому течет ток. Длину соленоида считаем во много раз больше, чем диаметр его витков, т. е. рассматриваемый соленоид бесконечно длинный. Экспериментальное изучение магнитного поля соленоида показывает, что внутри соленоида поле является однородным, вне соленоида — неоднородным и очень слабым.
Н
а
рис. 2.9 представлены линии магнитной
индукции внутри и вне соленоида. Чем
соленоид длиннее, тем меньше магнитная
индукция вне его. Поэтому приближенно
можно считать, что поле бесконечно
длинного соленоида сосредоточено
целиком внутри него, а полем вне соленоида
можно пренебречь.
Для нахождения магнитной индукции В выберем замкнутый прямоугольный контур ABCDA, как показано на рис. 2.9. Циркуляция вектора В по замкнутому контуру ABCDA, охватывающему все N витков, согласно теореме о циркуляции, равна
Интеграл по ABCDA можно представить в виде четырех интегралов: по АВ, ВС, CD и DA. На участках АВ и CD контур перпендикулярен линиям магнитной индукции и В=0. На участке вне соленоида В=0. На участке DA циркуляция вектора В равна В1 (контур совпадает с линией магнитной индукции); следовательно,
Отсюда приходим к выражению для магнитной индукции поля внутри соленоида (в вакууме):
Получили, что поле внутри соленоида однородно (краевыми эффектами в областях, прилегающих к торцам соленоида, при расчетах пренебрегают). Однако отметим, что вывод этой формулы не совсем корректен (линии магнитной индукции замкнуты, и интеграл по внешнему участку магнитного поля строго нулю не равен). Корректно рассчитать поле внутри соленоида можно, применяя закон Био — Савара — Лапласа; в результате получается та же формула.
В
ажное
значение для практики имеет также
магнитное поле тороида — кольцевой
катушки, витки которой намотаны на
сердечник, имеющий форму тора (рис.
2.10). Магнитное поле, как показывает опыт,
сосредоточено внутри тороида, вне его
поле отсутствует.
Линии магнитной индукции в данном случае, как следует из соображений симметрии, есть окружности, центры которых расположены по оси тороида. В качестве контура выберем одну такую окружность радиуса r. Тогда, по теореме о циркуляции, B2r = m0NI, откуда следует, что магнитная индукция внутри тороида (в вакууме)
,
где N — число витков тороида.
Если контур проходит вне тороида, то токов он не охватывает и B2r = 0. Это означает, что поле вне тороида отсутствует (что показывает и опыт).
Контрольные вопросы первого уровня
Как определяется сила Лоренца? Как определить направление силы Лоренца?
Чему равна работа силы Лоренца, действующей на заряженную частицу?
По какой траектории движется частица, если V B?
Чему равен радиус окружности, по которой движется заряженная частица?
Чему равен период движения частицы по окружности?
По какой траектории движется частица, если влетает в магнитное поле под углом к вектору магнитной индукции?
Как изменяется шаг и радиус спирали при уменьшении поля?
Что называется эффектом Холла? Какова причина эффекта Холла? Что можно сказать по постоянной Холла?
Что называется циркуляцией вектора магнитной индукции? Записать закон полного тока для магнитного поля в вакууме.
Магнитная индукция поля соленоида и тороида.
