Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПР_4.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
157.24 Кб
Скачать

Достаточные признаки экстремума функции.

Для нахождения максимумов и минимумов функции можно пользоваться любым из трех достаточных признаков экстремума. Хотя самым распространенным и удобным является первый из них.

Первое достаточное условие экстремума.

Пусть функция y = f(x) дифференцируема в -окрестности точки х0, а в самой точке х0 непрерывна. Тогда

  • если при и при , то х0- точка максимума;

  • если при и при , то х0- точка минимума.

Другими словами:

если в точке х0 функция непрерывна и в ней производная меняет знак с плюса на минус, то х0 - точка максимума;

если в точке х0 функция непрерывна и в ней производная меняет знак с минуса на плюс, то х0- точка минимума.

  1. Нахождение интервалов выпуклости и вогнутости. Это делается с помощью исследования знака второй производной . Найти точки перегиба на стыках интервалов выпуклости и вогнутости. Вычислить значение функции в точках перегиба. Если функция имеет другие точки непрерывности (кроме точек перегиба), в которых вторая производная равна 0 либо не существует, то в этих точках также полезно вычислить значение функции. Найдя , мы решаем неравенство . На каждом из интервалов решения функция будет выпуклой вниз. Решая обратное неравенство , мы находим интервалы, на которых функция выпукла вверх (то есть вогнута). Определяем точки перегиба как те точки, в которых функция меняет направление выпуклости (и непрерывна).

Дифференцируемая функция называется выпуклой вниз на интервале Х, если ее график расположен не ниже касательной к нему в любой точке интервала Х. Дифференцируемая функция называется выпуклой вверх на интервале Х, если ее график расположен не выше касательной к нему в любой точке интервала Х. Выпуклую вверх функцию часто называют выпуклой, а выпуклую вниз – вогнутой.

Посмотрите на чертеж, иллюстрирующий эти определения.

y

x

0

Точка называется точкой перегиба графика функции y = f(x), если в данной точке существует касательная к графику функции (она может быть параллельна оси Оу) и существует такая окрестность точки х0, в пределах которой слева и справа от точки М график функции имеет разные направления выпуклости. Другими словами, точка М называется точкой перегиба графика функции, если в этой точке существует касательная и график функции меняет направление выпуклости, проходя через нее.

Пример 1.

Провести полное исследование функции и построить ее график.

Решение.

1. Нахождение области определения функции.

Это очень важный шаг исследования функции, так как все дальнейшие действия будут проводиться на области определения. В нашем примере нужно найти нули знаменателя и исключить их из области действительных чисел.

2. Особые свойства функции.

Область определения функции симметрична относительно начала координат, исследуем функцию на четность и нечетность. Для этого найдем

Периодической функция не является.

3. Вертикальные асимптоты

На границах области определения функция имеет вертикальные асимптоты, если односторонние пределы функции в этих граничных точках бесконечны.

В нашем примере граничными точками области определения являются

Исследуем поведение функции при приближении к этим точкам слева и справа, для чего найдем односторонние пределы:

Так как односторонние пределы бесконечны, то прямые являются вертикальными асимптотами графика.