- •Подготовка к запуску двигателей
- •Запуск и опробование двигателей
- •Руление Техника руления
- •Характерные ошибки
- •Висение, подлеты и перемещения у земли Висение
- •Подлеты и перемещения у земли
- •Вертикальное снижение и приземление
- •Характерные ошибки
- •Взлет по-вертолетному
- •Взлет по-самолетному
- •Особенности взлета при боковом ветре
- •Особенности взлета с пыльных и заснеженных площадок
- •Характерные ошибки
- •Набор высоты горизонтальный полет, планирование Набор высоты
- •Горизонтальный полет
- •Планирование
- •Характерные ошибки
- •Расчет на посадку и посадка
- •Посадка по-вертолетному
- •Посадка по-самолетному
- •Характерные ошибки
- •Особенности посадки по-вертолетному на пыльную (заснеженную) площадку
- •Особенности посадки по-самолетному на пыльную (заснеженную) площадку
- •Полет и посадка с одним работающим двигателем
- •Запуск двигателя в полете
- •Полет по кругу
- •Полет в зону
- •Маневрирование скоростью
- •Вираж и спираль
- •Форсированный разворот
- •Пикирование
- •Разворот на горке
- •Планирование на режиме самовращения несущего винта
- •Особенности пилотирования вертолета с отключенным автопилотом
- •Характерные ошибки
- •Методические рекомендации командиру (инструктору)
- •Глава 2 полеты по приборам в закрытой кабине
- •Особенности подготовки к полету
- •Набор высоты
- •Горизонтальный полет
- •Виражи и развороты
- •Снижение
- •Пилотирование вертолета по дублирующим приборам
- •Характерные ошибки
- •Методические рекомендации командиру (инструктору)
- •Глава 3 полеты ночью в простых метеорологических условиях особенности подготовки и выполнения полетов ночью
- •Характерные ошибки
- •Методические рекомендации командиру (инструктору)
- •Глава 4 полеты в сложных метеорологических условиях особенности подготовки к полетам
- •Полеты в зону в облаках
- •Заход на посадку по приборам
- •Заход на посадку с прямой
- •Заход на посадку по коробочке
- •Заход па посадку по малой коробочке
- •Заход на посадку по наземному радиопеленгатору
- •Особенности полетов в сложных метеорологических условиях ночью
- •Характерные ошибки
- •Меры безопасности
- •Методические рекомендации командиру (инструктору)
- •Глава 5 групповые полеты особенности подготовки и выполнения групповых полетов
- •Особенности группового полета ночью
- •Выполнение фигур пилотажа в составе пары
- •Форсированный разворот на 180° парой
- •Пикирование парой
- •Горка парой
- •Разворот на горке парой
- •Характерные ошибки
- •Методические рекомендации командиру (инструктору)
- •Глава 6 полеты на предельно малых высотах
- •Полет в зону
- •Особенности выполнения групповых полетов на предельно малых высотах
- •Характерные ошибки
- •Меры безопасности
- •Методические рекомендации командиру (инструктору)
- •Глава 7 полеты в горах особенности полетов в горах
- •Способы взлета с различных площадок
- •Расчет на посадку и посадка
- •Характерные ошибки
- •Меры безопасности
- •Методические рекомендации командиру (инструктору)
- •Глава 8 полеты с грузом на внешней подвеске устройство системы внешней подвески и подготовка ее к перевозке грузов
- •Пилотирование вертолета с грузом на внешней подвеске Пилотирование вертолета с грузом на внешней подвеске днем
- •Особенности пилотирования вертолета с грузом на внешней подвеске ночью
- •Характерные ошибки
- •Меры безопасности
- •Методические рекомендации командиру (инструктору)
- •Глава 9 вертолетовождение подготовка к маршрутному полету
- •Выполнение маршрутного полета
- •Применение дисс-15 в маршрутном полете и для захода на посадку
- •Особенности вертолетовождения на предельно малых высотах
- •Особенности вертолетовождения в сложных метеорологических условиях
- •Особенности вертолетовождения ночью
- •Особенности вертолетовождения в горах
- •Характерные ошибки
- •Методические рекомендации командиру (штурману)
Горизонтальный полет
Под режимом горизонтального полета понимается установившееся прямолинейное движение вертолета с постоянной скоростью без набора высоты и снижения.
Для перевода вертолета из набора высоты в горизонтальный полет необходимо, не меняя режима работы двигателей, отклонением ручки управления от себя установить заданную скорость, а затем рычагом ШАГ-ГАЗ подобрать режим работы двигателей, соответствующий заданной скорости горизонтального полета. Частота вращения несущего винта при этом автоматически поддерживается в пределах 95±1%. После перевода вертолета в режим горизонтального полета появляющиеся усилия на ручке управления снять триммерами.
О правильности подбору режима работы двигателей для горизонтального полета на заданных скорости и высоте полета можно судить по показаниям указателя скорости и вариометра. Если при заданной скорости полета стрелка вариометра находится около нулевого положения, режим работы двигателей подобран правильно. Если же при заданной скорости полета стрелка вариометра показывает спуск, то летчик должен рычагом ШАГ-ГАЗ несколько увеличить мощность двигателей, а отклонением ручки управления на себя увеличить угол тангажа. Когда при заданной скорости полета вариометр показывает подъем рычагами управления, следует действовать в обратном порядке.
После того как будет подобран режим работы двигателей, рекомендуется запомнить положение остекления кабины относительно линии естественного горизонта и сохранять его соответствующими отклонениями рычагов управления, периодически контролируя режим полета по авиагоризонту, вариометру и указателю скорости. Это облегчит пилотирование вертолета в визуальном полете.
Горизонтальный полет вертолета в зависимости от высоты полета разрешается производить при взлетной массе 13 000 и 11 100 кг (для Ми-8Т при взлетной массе 12 000 и 11000 кг) в диапазоне скоростей по прибору, указанных в таблице 1.
На рис. 15 показана схема сил, действующих на вертолете горизонтальном полете.
Рисунок 15. Схема сил, действующих на вертолет в горизонтальном полете.
Сила тяжести вертолета G в горизонтальном полете должна быть уравновешена вертикальной составляющей Y тяги несущего винта. Этим обеспечивается сохранение постоянства высоты полета. Чтобы скорость полета была постоянной, сила вредного сопротивления Qвp должна быть равной горизонтальной составляющей Р тяги несущего винта. Равенство реактивного момента Мр несущего винта моменту от тяги рулевого винта Трвlрв является условием сохранения прямолинейности полета.
Известно, что с увеличением скорости полета потребная тяга увеличивается. Объясняется это ростом вредного сопротивления вертолета (оно изменяется пропорционально квадрату скорости). Для уравновешивания силы вредного сопротивления потребуется увеличить горизонтальную составляющую тяги несущего винта. А этого можно достигнуть только за счет увеличения общей тяги несущего винта, так как при наклоне ее вперед (для увеличения горизонтальной составляющей) вертикальная составляющая Y должна оставаться равной силе тяжести вертолета.
Располагаемая тяга с увеличением скорости полета до экономической вследствие увеличения секундного расхода воздуха, проходящего через несущий винт, растет. При дальнейшем увеличении скорости из-за расширения зоны обратного обтекания и усиливающегося срыва потока воздуха с концов отступающих лопастей несущего винта в азимуте 270° располагаемая тяга падает. В результате этого потребная мощность при увеличении скорости до экономической Vэк будет уменьшаться, а при дальнейшем росте скорости увеличиваться.
График располагаемой и потребной мощностей показан на рис. 16.
Скорость полета, при которой располагаемая мощность Np равна потребной Nгп (избыток мощности отсутствует), называется максимальной Vмакс. Однако максимальная скорость горизонтального полета, как правило, ограничивается срывом воздушного потока, возникающим на отступающей лопасти несущего винта. Первоначальное возникновение срыва проявляется в сильной тряске всего вертолета. В дальнейшем с увеличением скорости полета зона срыва быстро увеличивается, что приводит к потере управляемости.
Нарушение плавности обтекания лопасти несущего винта воздушным потоком (срыв потока) наступает на определенной скорости полета, при которой вследствие движения лопастей истинные углы атаки лопасти, идущей назад, достигают критического значения. Чем больше величина общего шага винта, тем на меньшей скорости полета возникает срыв потока. С увеличением высоты полета срыв потока наступает раньше, так как из-за уменьшения плотности воздуха для создания той же тяги общий шаг несущего винта необходимо увеличить.
Рисунок 16. График распологаемой и потребной мощностей горизонтального полета.
Другой причиной, ограничивающей максимальную скорость полета, является влияние сжимаемости воздуха. При движении по полету каждая лопасть несущего винта в азимуте 90° проходит зону наибольших скоростей обтекания, в которой местная скорость обтекания может превысить скорость звука. При этом возникает скачок уплотнения, приводящий к резкому увеличению силы лобового сопротивления лопастей несущего винта, а следовательно, и потребной мощности. Для снижения влияния сжимаемости воздуха в концевых сечениях лопастей несущего винта, работающих в зоне наибольших скоростей обтекания, установлены скоростные профили с небольшой относительной толщиной.
Для уменьшения вредного сопротивления вертолета ось главного редуктора наклонена вперед от вертикальной оси на угол 4°30'. Этим уменьшается наклон продольной оси фюзеляжа на крейсерской и максимальной скоростях полета, а следовательно, уменьшается площадь сечения фюзеляжа, расположенная перпендикулярно к встречному потоку воздуха.
Максимальная скорость горизонтального полета по прибору до высоты 1000 м со взлетной массой 13 000 кг (Ми-8Т — 12 000 кг) установлена 230 км/ч, для взлетной массы 11 100— 250 км/ч.
Горизонтальный полет в учебных целях (при полетах по кругу и по системе) рекомендуется выполнять на скорости 160 км/ч. Полеты по маршруту, т. е. полеты, в которых требуется достигнуть наибольшую дальность полета, выполняются на скоростях, указанных в табл. 1.
При полете со скоростями меньше указанных в таблице 1 радиус и дальность полета уменьшается, а продолжительность полета увеличивается. Максимальная продолжительность полета получается при скоростях по прибору 120—130 км/ч.
