Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
LEKCIYa_14.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
937.98 Кб
Скачать
      1. Построение аддитивной и мультипликативной тренд-сезонных моделей временного ряда

Для исследования периодических колебаний необходимо отфильтровать из временного ряда периодическую компоненту, а затем уже анализировать её динамику. Большинство методов фильтрации построено таким образом, что предварительно выделяется тренд, а затем уже периодическая компонента. Чаще всего для выделения тренда, перед расчётом периодической компоненты, используют методы механического сглаживания. Процесс выделения компоненты временного ряда: тренда (T), периодической компоненты (S) и случайной компоненты () называется фильтрацией. В настоящее время развивается три основных направления фильтрации компонент временного ряда: регрессионные, спектральные и итерационные.

Замечание. В прикладных пакетах анализа метод расчета сезонных компонент известен как метод Census I. Существует также усовершенствованный с помощью различных приемов метод Census II, учитывающий, например, такой циклический фактор, как эффект конца рабочей недели или эффект выходного дня.

Существует несколько основных методов моделирования сезонных и циклических колебаний. К ним относятся:

  • расчёт сезонной компоненты и построение аддитивной или мультипликативной модели временного ряда;

  • применение сезонных фиктивных переменных;

  • использование рядов Фурье.

Если амплитуда сезонных колебаний не меняется во времени, то применяют аддитивную модель временного ряда следующего вида:

, (10.3)

где T – трендовая компонента, S – сезонная компонента,  – случайная составляющая.

Если амплитуда сезонных колебаний со временем изменяется, то применяется мультипликативная модель временного ряда следующего вида:

. (10.4)

В качестве сезонной составляющей для аддитивной модели временного ряда применяют абсолютное отклонение , а для мультипликативной – индекс сезонности . Данные сезонные компоненты должны удовлетворять следующим требованиям:

1) в случае аддитивной модели сумма всех сезонных компонент (абсолютных отклонений ) должна быть равна нулю;

2) в случае мультипликативной модели произведение всех сезонных компонент (индексов сезонности ) должно быть равно единице.

Перед расчётом сезонной компоненты исходный ряд подвергают процедуре выравнивания, обычно методами механического сглаживания. В результате получают ряд выровненных значений , который не содержит сезонной компоненты.

Абсолютное отклонение в i-м сезоне рассчитывается как среднее арифметическое отклонение фактического и сглаженного уровней ряда:

.

Индекс сезонности в i-ом сезоне рассчитывается как среднее арифметическое отношений фактического уровня ряда к сглаженному:

.

При расчете тренда временного ряда используется метод аналитического выравнивания с помощью функций времени или кривых роста. Этот метод применяется не к исходному фактическому временному ряду, а к ряду, из которого удалена сезонная компонента. Таким образом, начальные уровни ряда корректируются на величину сезонной компоненты. В случае аддитивной модели из исходных уровней вычитаются абсолютные отклонения Sai. При наличии мультипликативной модели начальные уровни временного ряда делятся на индексы сезонности Isi.

Если при построении аддитивной модели сумма всех абсолютных отклонений не равна нулю, то рассчитывают скорректированные значения сезонных компонент:

,

где L – общее количество сезонных компонент.

Если при построении мультипликативной модели произведение всех индексов сезонности не равна единице, то рассчитывают скорректированные значения сезонных компонент:

.

Пример 10.2. Построить аддитивную и мультипликативную модели по результатам примера 10.1.

Решение. Тренд примем по результатам центрированной четырехуровневой скользящей средней и рассчитаем сезонную составляющую для аддитивной и мультипликативной моделей.

Таблица 10.2

квартала, t

Потребление электроэнергии, yt

Центрирования скользящая средняя

Оценка сезонной компоненты Sai

Оценка индекса сезонности Isi

1

6,0

2

4,4

3

5,0

6,250

–1,250

0,8000

4

9,0

6,450

2,550

1,3953

5

7,2

6,625

0,575

1,0868

6

4,8

6,875

–2,075

0,6982

7

6,0

7,100

–1,100

0,8451

8

10,0

7,300

2,700

1,3699

9

8,0

7,450

0,550

1,0738

10

5,6

7,650

–2,025

0,7344

11

6,4

7,875

–1,475

0,8127

12

11,0

8,125

2,875

1,3538

13

9,0

8,325

0,675

1,0811

14

6,6

8,375

–1,775

0,7881

15

7,0

16

10,8

Используем эти оценки для расчета значений сезонной компоненты S в аддитивной модели (таб. 10.2). Для этого найдем средние за каждый квартал (по всем годам) оценки сезонной компоненты S. В моделях с сезонной компонентой обычно предполагается, что сезонные воздействия за период взаимопогашаются. В аддитивной модели это выражается в том, что сумма значений сезонной компоненты по всем кварталам должна быть равна нулю.

Таблица 10.3

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]