- •1.Основные понятия и определения
- •Основные понятия
- •1.2 Характеристики измерительных приборов
- •2 Аналоговые электромеханические измерительные приборы
- •2.1 Общие сведения
- •2.2 Магнитоэлектрические измерительные приборы
- •2.3 Комбинированные аналоговые измерительные приборы
- •2.4 Электродинамические измерительные приборы
- •2.5 Электромагнитные измерительные приборы
- •2.6 Электростатические измерительные приборы
- •2.7 Логометры
- •3 Измерительные генераторы сигналов
- •3.1 Общие сведения
- •3.2 Низкочастотные измерительные генераторы синусоидальных колебаний
- •3.3 Импульсные генераторы
- •4 Электронные осциллографы
- •4.1 Электронные осциллографы общего назначения
- •4.2 Основные узлы электронных осциллографов
- •4.3 Классификация электронных осциллографов
- •4.4 Стробоскопические электронные осциллографы
- •4.5 Универсальные электронные осциллографы
- •4.6 Запоминающие электронные осциллографы
- •4.7 Анализаторы спектра частот
- •4.8 Измерители нелинейных искажений
- •5 Аналоговые электронные вольтметры
- •5.1 Общие сведения
- •Вольтметра
- •5.2 Основные узлы аналоговых электронных вольтметров
- •5.3 Свойства аналоговых электронных вольтметров и особенности их включения
- •5.4 Влияние формы кривой измеряемого напряжения на показания аналоговых электронных вольтметров
- •6 Цифровые вольтметры
- •6.1 Общие сведения
- •6.2 Цифровые вольтметры постоянного тока с поразрядным кодированием (взвешиванием)
- •6.3 Цифровые вольтметры постоянного тока с время - импульсным преобразованием
- •6.4 Цифровые вольтметры постоянного тока с частотно-импульсным преобразованием (интегрирующие)
- •6.5 Цифровые вольтметры постоянного тока с двойным интегрированием
- •6.6 Цифровые вольтметры постоянного тока с комбинированным преобразованием
- •С комбинированным преобразованием
- •6.7 Цифровые вольтметры переменного тока
- •7. Методы измерения напряжения и тока
- •7.1 Общие сведения
- •7.2 Измерение напряжения в цепях постоянного тока
- •7.3 Измерение постоянного тока
- •7.4 Измерение напряжения и тока на низких и высоких частотах
- •7.5 Измерение импульсных напряжений
- •8 Счетчики электрической энергии (Вариант 1)
- •8.1 Общие сведения
- •8.2 Электродинамические счетчики
- •9 Счетчики электрической энергии (Вариант 2)
- •9.1 Измерение энергии однофазного переменного тока
- •9.2 Измерение активной мощности и энергии в трехфазных цепях
- •Р Рисунок 9.9 – Схема измерения активной мощности тремя ваттметрами исунок 9.8 – Схемы включения двух ваттметров для измерения активной мощности трехфазной сети
- •10 Измерительные информационные системы
- •10.1 Общие сведения
- •10.2 Измерительные системы
- •10.3 Телеизмерительные системы
- •Содержание
- •1 Основные понятия и определения
- •1.1 Основные понятия 3
2.4 Электродинамические измерительные приборы
И
Рисунок 2.12 – Устройство электродинамического измерительного механизма
змерительные механизмы. Эти механизмы (рис. 2.12) работают на принципе взаимодействия магнитных потоков двух катушек, по которым протекают токи. Измерительные механизмы состоят из пары неподвижных кат ушек 1 (круглой или прямоугольной формы), соединенных последовательно. Внутри этих катушек на оси находится бескаркасная подвижная катушка (рамка) 2. Для подвода тока в подвижною катушку и создания противодействующего момента применяют спиральные пружинки.
Ч
тобы
получить вращающий момент М,
используют
электромагнитную энергию системы
из двух катушек, по которым протекают
постоянные токи
и
,
т. е.
где
- индуктивности катушек;
- их взаимная индуктивность. Если
потоки подвижной и неподвижных
катушек совпадают, то взаимная
индуктивность катушек
положительна,
если же потоки направлены в разные
стороны - то отрицательна. При повороте
подвижной катушки на угол α
изменяется взаимная индуктивность
,
зависящая
от формы и взаимного расположения
катушек, а индуктивности
и
остаются
постоянными. Вращающий момент
(2.25)
При
некоторых определенных соотношениях
размеров подвижной и неподвижных
катушек можно получить
в пределах рабочей части шкалы.
Под действием вращающего момента подвижная катушка стремится занять такое положение, при котором направление ее магнитного поля совпадало бы с направлением магнитного поля неподвижных катушек. При этом она будет поворачиваться до тех пор, шока вращающий и противодействующий моменты не сравняются, т. е. . Следовательно, угол отклонения подвижной части механизма
(2.26)
При включении электродинамического механизма в цепь переменного тока мгновенное значение вращающего момента
(2.27)
где
;
- мгновенные значения токов в катушках
(
-
начальные
углы сдвига фаз).
Среднее значение вращающего момента за период, на который реагирует подвижная часть механизма,
(2.28)
где
- среднеквадратичные значения токов в
катушках;
-
угол сдвига фаз между векторами токов
и
.
Угол отклонения подвижной части механизма
(2.29)
показывает, что при несовпадении по фазе токов отклонение подвижной части, а пропорционально произведению среднеквадратичных значений этих токов на косинус угла сдвига фаз между ними.
Электродинамические механизмы содержат две цепи тока, поэтому являются множительным устройством и обладают фазочувствительностью. Данная особенность позволяет применять их не только в амперметрах, вольтметрах, но и в ваттметрах, фазометрах и др.
К достоинствам электродинамических механизмов относят высокую точность и возможность использования их как в цепях постоянного тока, так и в цепях переменного тока, к недостаткам - малую чувствительность; влияние внешних магнитных полей на покaзaния ИМ (слабое собственное магнитное поле); большую мощность потребления; ограниченный частотный диапазон (до 1,5 кГц). Электродинамические механизмы используют в амперметрах, вольтметрах, ваттметрах при лабораторных измерениях в цепях постоянного и пёрёменного токов промышленной частоты, фазометрах. Для уменьшения влияния внешних магнитных полей на показания приборов применяют магнитное экранирование измерительного механизма, астизирование (с общей осью измерительного механизма наматываются витки встречно с одинаковым числом витков). Собственные магнитные поля измерительного механизма направлены в противоположные стороны. Внешнее равномерное магнитное поле, усиливая поле одного измерительного механизма на какое-то значение, на это же значение ослабляет поле другого, но не изменяет их суммарного вращающего момента.
Амперметры
и вольтметры.
Если неподвижные и подвижные катушки
соединить последовательно и по ним
пропустить один и тот же ток
,
то угол отклонения подвижной части
механизма
(2.30)
где k - коэффициент пропорциональности.
Следовательно, отклонение подвижной части прибора пропорционально квадрату тока (напряжения). При изменении направления токов в обеих катушках отклонение подвижной части прибора останется прежним. Так как токи и совпадают по фазе, то прибор может иметь одну шкалу для постоянных и переменных токов (например, для амперметров на малые токи до 0,1 А и вольтметров).
При токах выше 0,1 А катушки соединяются параллельно.
Электродинамические амперметры применяют для измерения токов 0,1-10 А. Использование их для измерения токов миллиамперного диапазона в маломощных цепях ограничивается большой мощностью потребления и малой чувствительностью. Изменение пределов измерения достигается секционированием неподвижных катушек, а также комбинацией последовательно-параллельного соединения секций неподвижных катушек с подвижной катушкой.
В электродинамических вольтметрах неподвижная и подвижная катушки соединяются последовательно с добавочным резистором и по ним проходит один и тот же ток.
Электродинамические вольтметры выпускаются на несколько пределов (до 300 В.) и используют их в основном для точных измерений. Внутреннее сопротивление их мало (примерно 1 кОм на пределе 30 В), мощность потребления изменяется в зависимости от предела измерения, максимум до 10 Вт, чувствительность низкая
Пределы измерения амперметров и вольтметров могут быть рас ширены с помощью измерительных трансформаторов токов и напряжений.
