Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety_k_ekzamenu_po_biofizike.doc
Скачиваний:
2
Добавлен:
01.07.2025
Размер:
891.39 Кб
Скачать
  1. Белок. Строение. Функции. Реакция образования. Пептидная связь. Пространственная организация белка. Кооперативность.

Белки́ — высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью альфа-аминокислот.

Функции: структурная, защитная, транспортная (перенос кислорода),питательная, сократительная, гармональная, каталитическая.

Функции:

Строительный материал – белки участвуют в образовании оболочки клетки, органоидов и мембран клетки. Из белков построены кровеносные сосуды, сухожилия, волосы. 2. Каталитическая роль – все клеточные катализаторы – белки (активные центры фермента). Структура активного центра фермента и структура субстрата точно соответствуют друг другу, как ключ и замок. 3. Двигательная функция – сократительные белки вызывают всякое движение. 4. Транспортная функция – белок крови гемоглобин присоединяет кислород и разносит его по всем тканям. 5. Защитная роль – выработка белковых тел и антител для обезвреживания чужеродных веществ. 6. Энергетическая функция – 1 г белка эквивалентен 17,6 кДж.

Пептидная связь:

Пептидная связь — вид амидной связи, возникающей при образовании белков и пептидов в результате взаимодействия α-аминогруппы (—NH2) одной аминокислоты с α-карбоксильной группой (—СООН) другой аминокислоты.

Из двух аминокислот (1) и (2) образуется дипептид (цепочка из двух аминокислот) и молекула воды. По этой же схеме рибосома генерирует и более длинные цепочки из аминокислот: полипептиды и белки. Разные аминокислоты, которые являются «строительными блоками» для белка, отличаются радикалом R

Пространственная организация белка:

Первыми глобулярными белками, элементы пространственной структуры которых были определены с помощью рентгено-структурного анализа их кристаллов, были эдестин , альбумин и эксельстин.

Общие черты пространственных структур различных белков были установлены в работах Л.Полинга и Р.Кори

1. Длины связей и величины валентных углов всех пептидых груп - одинаковы.

2. Все атомы пептидной группы расположены в одной плоскости и предпочтительной конфигурацией пептидной группы является транс-конфигурация

3. Полипептидная цепь полностью насыщена водородными связями

4. Двухгранные углы вращения вокруг связей N - Cа и Cа - С' отвечают минимумам торсионных потенциалов, а расстояния между всеми валентно не связанными атомами превышают суммы ван-дер-ваальсовых радиусов.

5. Конформационные состояния всех звеньев полипептидной цепи эквивалентны.

Кооперативность

Кооперативность, явление кооперативности — это такие изменения состояния системы, взаимодействие элементов которой усиливается с течением процесса изменения так, что существенно ускоряет его ход в целом (положительная кооперативность). Таким образом, сила взаимодействия атомов или молекул возрастает по мере нарастания изменений в системе, делая их коллективно согласованными. Кооперативность нельзя объяснить простым сложением свойств отдельных атомов и молекул, её природа — в кооперации элементов системы, в результате которой система ведет себя как единый ансамбль, подчиняющийся определенному закону изменения.

Первичная структура — последовательность аминокислот в полипептидной цепи. Важными особенностями первичной структуры являются консервативные мотивы — сочетания аминокислот, играющих ключевую роль в функциях белка.

Вторичная структура — локальное упорядочивание фрагмента полипептидной цепи, стабилизированное водородными связями. Ниже приведены самые распространённые типы вторичной структуры белков:

α-спирали — плотные витки вокруг длинной оси молекулы, один виток составляют 3,6 аминокислотных остатка, и шаг спирали составляет 0,54 нм[15] (так что на один аминокислотный остаток приходится 0,15 нм), спираль стабилизирована водородными связями между H и O пептидных групп, отстоящих друг от друга на 4 звена.

β-листы (складчатые слои) — несколько зигзагообразных полипептидных цепей, в которых водородные связи образуются между относительно удалёнными друг от друга (0,347 нм на аминокислотный остаток[15]) в первичной структуре аминокислотами или разными цепями белка, а не близко расположенными, как имеет место в α-спирали. Эти цепи обычно направлены N-концами в противоположные стороны (антипараллельная ориентация). Для образования β-листов важны небольшие размеры боковых групп аминокислот, преобладают обычно глицин и аланин.

Третичная структура — пространственное строение полипептидной цепи (набор пространственных координат составляющих белок атомов). Структурно состоит из элементов вторичной структуры, стабилизированных различными типами взаимодействий, в которых гидрофобные взаимодействия играют важнейшую роль. В стабилизации третичной структуры принимают участие:

ковалентные связи (между двумя остатками цистеина — дисульфидные мостики);

ионные связи между противоположно заряженными боковыми группами аминокислотных остатков;

водородные связи;

гидрофильно-гидрофобные взаимодействия. При взаимодействии с окружающими молекулами воды белковая молекула «стремится» свернуться так, чтобы неполярные боковые группы аминокислот оказались изолированы от водного раствора; на поверхности молекулы оказываются полярные гидрофильные боковые группы.

Четверичная структура (или субъединичная, доменная) — взаимное расположение нескольких полипептидных цепей в составе единого белкового комплекса. Белковые молекулы, входящие в состав белка с четвертичной структурой, образуются на рибосомах по отдельности и лишь после окончания синтеза образуют общую надмолекулярную структуру. В состав белка с четвертичной структурой могут входить как идентичные, так и различающиеся полипептидные цепочки. В стабилизации четвертичной структуры принимают участие те же типы взаимодействий, что и в стабилизации третичной. Надмолекулярные белковые комплексы могут состоять из десятков молекул.