- •Предмет и задачи биофизики. Биологические и физиологические процессы и закономерности в живых системах. Принципы автоматической регуляции в живых системах.
- •Основные особенности кинетики биологических процессов. Описание динамики биологических процессов на языке химической кинетики.
- •Термодинамические системы. Классификация термодинамических систем. Состояние системы. Стационарные состояния биологических систем. Первый закон ермодинамики.
- •Второй закон термодинамики. Энтропия. Изменение энтропии в открытых системах. Диссипация энергии.
- •Влияние температуры на скорость реакций в биологических системах.
- •Явления переноса в биологических системах, потоки и обобщенные силы. Их роль в функционировании организма как стационарной термодинамической системы.
- •Термодинамическое сопряжение реакций и тепловые эффекты в биологических системах. Механизмы теплообразования и регуляции температуры в живых организмах.
- •Энерготраты организма. Основной обмен. Методы измерения основного обмена Физико-химическое обоснование метода непрямой калориметрии.
- •Макромолекула как основа организации биоструктур. Основные классы органических соединений, входящие в состав биоструктур. Электрофизические свойства биоструктур.
- •Структура и пространственная организация биополимеров. Пространственная конфигурация биополимеров. Оптические свойства биополимеров.
- •Состояние воды и гидрофобные взаимодействия в биоструктурах. Переходы спираль-клубок. Факторы стабилизации макромолекул.
- •Белок. Строение. Функции. Реакция образования. Пептидная связь. Пространственная организация белка. Кооперативность.
- •Структурные и энергетические факторы определяющие динамическую подвижность белков. Роль конформационной подвижности в функционировании ферментов и транспортных белков.
- •Диффузия частиц через полупроницаемую мембрану. Коэффициент распределения, коэффициент проницаемости. Закон Фика для этого случая. Методы изучения проницаемости мембран.
- •Транспорт электролитов. Электрохимический потенциал. Ионные каналы. Ионная селективность мембран.
- •Электродиффузионная теория, ее основные допущения. Диффузия заряженных частиц. Уравнение Теорелла. Уравнение Нернста - Планка.
- •Активный транспорт веществ через биологическую мембрану. Опыт Уссинга.
- •???Механизм распространения потенциалов действия вдоль нервного волокна, локальные токи, сальтаторное распространение. Скорость распространения потенциалов действия по нервному волокну.
- •Электротонический потенциал. Зависимость электротонического потенциала от координаты волокна, формула, график. Постоянная длины волокна.
- •Механизм передачи сигнала через синапс.
- •Громкость звука. Зависимость громкости от интенсивности и частоты звуковой волны. Кривая порога слышимости, кривые равной громкости. Аудиометрия.
- •Классификация раздражителей по модальности. Классификации рецепторов.
- •Первичночувствующие рецепторы. Механизм восприятия и передачи сигнала в первичночувствующих рецепторах.
- •Вторичночувствующие рецепторы. Механизм восприятия и передачи сигнала во вторичночувствующих рецепторах.
- •Кодирование информации в рецепторах.
- •Фильтрационно-реабсорбционное равновесие в кровеносных сосудах.
- •Причины и механизмы отеков тканей.
- •Механизм реабсорбции воды в почках.
- •Механизм транспорта газов через альвеолярно-капиллярную мембрану. Условия необходимые для обеспечения поступления кислорода в кровь (эритроцит). Кислородная емкость крови. От чего зависит?
- •Механизм всасывания углеводов через стенку кишечника.
- •Механизм всасывания белков через стенку кишечника.
Регулирование скорости реакции в организме. Принцип узкого места. Особенности механизмов ферментативных реакций.
Кинетика простейших реакций ферментативного катализа. Уравнение Михаэлиса-Ментена. Влияние модификаторов на кинетику ферментативных реакций.
Влияние температуры на скорость реакций в биологических системах.
Для оценки зависимости процесс от температуры используется температурный коэффициент Вант-Гоффа Q10. Он показывает изменение скорости при изменении температуры на 10 градусов. Для процессов, протекающих с преодолением потенц.барьера, характерна сильная зависимость от температуры. Чем выше энергия активации. Тем больше коэффициент. Для реакций, протекающих по принципу изменения энтропийного фактора, коэффициент низкий.
Явления переноса в биологических системах, потоки и обобщенные силы. Их роль в функционировании организма как стационарной термодинамической системы.
Во многих случаях скорости процессов прямо пропорциональны соответствующим обобщенным силам (Xi), характеризующим причины возникновения соответствующего процесса: dxi/dt=Ai ·Xi Это уравнение показывает многие процессы: диффузия, перенос заряда, биоперенос, теплоперенос.
В процессе теплопроводности dQ/dt=AQgradТ, где AQ = К·s, К—коэффициент теплопроводности, s — площадь, через которую переносится тепло.
Скорость химической реакции, dν /dt=Aμ·μx, где Aμ - Коэффициент хим.сродства
Движении электрических зарядов dq/dt = Aэ·gradU= Aэ·E, где Aэ = σ ·s.
Диффузия dm/dt=-D·s·(C1-C2)/l, где D — коэффициент диффузии.
Или dm/dt=AD·gradC – уравнение Фика.
В частности, между разными одновременно текущими процессами происходит обмен энергией. Такие процессы принято называть термодинамически сопряженными.
В результате сопряжения скорость каждого процесса будет зависеть не только от «своей» обобщенной силы, но и от всех обобщенных сил, действующих в системе. уравнения переноса записываются в такой форме:
dx1/dt=A11·X1+A12·X2+…+A1n·Xn,
dx2/dt=A21·X1+A22·X2+…+A2n·Xn,
dxn/dt=An1·X1+An2·X2+…+Ann·Xn.
Транспорт веществ через клеточные мембраны также осуществляется благодаря термодинамическому сопряжению разнообразных процессов
dm/dt=A11gradC+A12gradU+A13x;
dq/dt=A21gradC+A22gradU+A23x;
d/dt=A31gradC+A32gradU+A33x.Величины коэффициентов Aik можно определить расчетным путем или экспериментально.
Тепловой баланс организма. Способы теплообмена. Уравнение теплового баланса.
Вся энергия, полученная организмом, кроме той, что идет на мех. Работу, превращается в тепло, которая отдается окружающей среде.
Теплоотдача – процесс отдачи тепла организмом человека осуществляется:
– теплопроводностью (кондукцией) - Теплопроводностью (кондукцией) осуществляется теплопередача от поверхности тела человека к соприкасающимся с ним твердых твердым предметам или материалам внешней среды.;
– конвекцией (проведением) - Конвекцией осуществляется передача тепла с поверхности тела или одежды человека движущемуся около него воздуху.;
– радиацией (излучением) - Теплоотдача радиацией – это передача тепла в форме лучистой энергии с поверхности тела человека на окружающие поверхности, имеющее более низкую температуру, или в окружающее пространство. Количество тепла, отдаваемого излучением, зависит от температуры поверхности тела (одежды), температуры окружающих тело стен и поверхностей, их способности излучать тепло, величины площади тела и окружающих поверхностей, расстояния и взаимного расположения тела и окружающих его поверхностей.;
– дыханием и испарением пота и влаги в легких - При испарении пота у организма человека отнимается тепло, являющееся скрытой теплотой парообразования.
Теплоотдача в процессе дыхания:
нагревание воздуха и испарение влаги
Количество тепла, отдаваемого телом человека на нагревание воздуха в легких, зависит от количества прошедшего воздуха и его температуры при входе и выходе. А количество тепла, отдаваемого на испарение влаги, зависит от количества воздуха, прошедшего через легкие при дыхании и от содержания влаги во вдыхаемом и выдыхаемом воздухе.
M + J = Qрад. + Qконв. + Qисп. + Qдых. + Z, где
M – энергия, вырабатываемая в организме человека (теплопродукция), ккал/час;
Z – тепло, которое расходуется на механическую работу;
Qрад. – потери тепла радиацией (излучение), ккал/ч;
Qконв. – потеря тепла теплопроводностью и конвекцией;
Qисп. – потеря тепла испарением влаги с кожи и верхних дыхательных путей, ккал/ч;
Qдых. – потеря тепла на нагрев вдыхаемого воздуха, ккал/ч;
J – адсорбция тепла радиацией, ккал/ч..
