- •Список основной литературы
- •Вопрос 1. Классификация потребителей тепла. Графики тепловых нагрузок. Классификация потребителей тепла. (8, с.51..55)
- •Вопрос 2. Тепловая нагрузка на отопление. (1, с.5..7)
- •Вопрос 3. Тепловая нагрузка на вентиляцию, горячее водоснабжение и технологические нужды. (1, с.7..9) Тепловая нагрузка на вентиляцию.
- •Тепловая нагрузка на горячее водоснабжение.
- •Тепловая нагрузка на технологические нужды.
- •Вопрос 4. Годовой график продолжительности тепловой нагрузки. Коэффициент теплофикации. (1, с.11..14)
- •Вопрос 5. Типы систем теплоснабжения. (1, с.14..18)
- •Вопрос 6. Паровая схема теплоснабжения с возвратом конденсата. (1, с.27-29)
- •6.1. Классификация систем технологического пароснабжения
- •6.3. Паровая схема теплоснабжения
- •6.4. Системы сбора и возврата конденсата
- •Вопрос 7. Гидравлические режимы в водяных тепловых сетях. (1, с.29..32, 4, с.35, лекции)
- •Вопрос 8. Методы регулирования отпуска теплоты. (1, с.33..34)
- •Вопрос 9. Автоматизация отпуска теплоты и причины перерасхода теплоты. (1, с.42..46)
- •Вопрос 10. Системы воздухоснабжения предприятия
- •10.1. Основные потребители сжатого воздуха
- •10.2. Типы компрессоров - преимущества и недостатки
- •10.3. Компрессорная станция
- •10.3.1. Принципиальная схема компрессорной установки
- •10.3.2. Вспомогательное оборудование компрессорной станции
- •10.4. Возможности снижения затрат электроэнергии, потерь воздуха и нерациональных потер давления. Возможные рекомендации по энергосбережению
- •Вопрос 11. Расчет системы отопления.
- •11.1. Уравнение теплового баланса помещения. Расчет тепловых потоков потерь и теплопоступлений. (3, с.3..4, 6..13)
- •11.2. Расчет количества и определение типа отопительных приборов. (3, с.14..17)
- •11.3. Основные правила гидравлического расчета систем водяного отопления. (3, с.17..20)
- •Вопрос 12. Определение тепловой мощности котельной, режимы ее работы, выбор оборудования
- •12.1. Расчет тепловой мощности котельной. Выбор типа и мощности котлоагрегатов. (2, с.44..46)
- •12.2. Методика расчета тепловой схемы и режимы работы котельной. (2, с.46..47)
- •12.3. Выбор сетевых, подпиточных, питательных, рециркуляционных насосов котельной. (2, с.48..49)
- •12.4. Принцип термической деаэрации воды. Основные типы и устройство деаэраторов. (2, с.50..52)
- •12.5. Тягодутьевые машины и дымовые трубы. (2, с.58..59)
- •Вопрос 13. Вторичные энергоресурсы промышленных предприятий и их использование. (3, с.63..68)
- •Вопрос 14. Расчет системы вентиляции. Подбор вентиляторов и калориферов
- •Вопрос 15. Варианты энергоснабжения и энергопотребление промышленных предприятий. (2, с.3..9)
- •Вопрос 26. Полезное использование низкопотенциальных энергоресурсов. Теплонасосные установки
- •Вопрос 29. Возможные энергосберегающие мероприятия в котельных установках.
Вопрос 6. Паровая схема теплоснабжения с возвратом конденсата. (1, с.27-29)
6.1. Классификация систем технологического пароснабжения
Крупные промышленные предприятия от внешних источников получают в основном перегретый пар. От ТЭЦ и крупных центральных котельных поступает пар, перегретый относительно температуры насыщения на 50 - 100°С, чтобы покрыть тепловые потери при транспорте теплоносителя. Степень перегрева пара в зимний период повышается, так как возрастают потери теплоты в окружающую среду из-за понижения температуры наружного воздуха.
При использовании пара в тепловых процессах его перегрев не играет существенной роли, так как доля теплоты, передаваемой за счет его охлаждения до температуры насыщения, очень мала, по сравнению с долей теплоты, передаваемой за счет скрытой теплоты конденсации пара. Однако при этом условия эксплуатации теплообменного оборудования ухудшаются и возрастают потери с пролетным паром.
Для обеспечения тепловых нагрузок преимущественно используется насыщенный пар среднего и низкого давления. Перегретый пар среднего и высокого давления используется в силовых процессах. Если для ведения технологических процессов требуется пар более высокой температуры 400 – 600 °С, то у потребителя устанавливаются специальные центральные пароперегреватели. За счет сжигания природного топлива в них достигается необходимая температура пара, полученного от внешних источников.
В заводских котельных, в том числе и утилизационных, преимущественно вырабатывается сухой насыщенный пар. Однако вследствие слабого контроля за степенью сухости отпускаемого пара к потребителю часто поступает влажный пар. В результате возрастают тепловые потери в теплоиспользующем оборудовании и снижается гидравлическая устойчивость транспортирующей паровой сети, поскольку в паропроводе увеличивается образование конденсата.
При поиске решений по организации эффективных систем пароснабжения промышленных предприятий необходимо рассматривать разнообразные процессы производства, транспорта, регулирования и потребления промышленного пара. Таким образом, система снабжения паром промышленного предприятия представляет собой комплекс различных установок и устройств, обеспечивающих эти процессы.
В целях упорядочения пароснабжения промышленных предприятий и снижения необоснованных потерь пара, связанных с несоответствием режимов работы потребителей и источников тепловой энергии в определенные отрезки времени, необходимо оптимизировать потребление пара. Нарушение расчетных графиков прихода и расхода теплоты по расходу и параметрам приводит к отклонению режимов работы источников пароснабжения от оптимальных, необходимости резервирования мощности, возрастанию затрат на сооружение аккумулирующих установок и, следовательно, перерасходу топлива, материальных и денежных средств.
Эта задача может быть решена только математическим моделированием реальных процессов, позволяющим учесть многочисленные факторы, влияющие на эффективность и устойчивость работы систем в выявленных диапазонах отклонений параметров.
Для построения моделей необходимо иметь надежную и подробную информацию о тепловом потреблении и уровне сопутствующих потерь теплоты. К сожалению, на промышленных предприятиях практически отсутствует информационная база по пароконденсатным балансам паропотребляющих установок, что не позволяет провести достоверный анализ эффективности энергопотребления объектов и характерных режимов их эксплуатации.
Системы технологического пароснабжения промышленных предприятий классифицируются по следующим признакам:
вид основного источника пароснабжения: ТЭЦ, центральные или местные котельные;
объем потребления пара: малое - до 6 кг/с; среднее 6 - 20 кг/с; большое - более 20 кг/с;
состояние пара: перегретый, насыщенный, совместное использование перегретого и насыщенного пара;
давление пара на входе в распределительную паровую сеть предприятия: низкое - менее 0,3 МПа; среднее - от 0,3 до 0,9 МПа; повышенное - от 0,9 до 1,5 МПа и высокое - более 1,5 МПа;
сложность паровой сети: протяженность, разветвленность и пр.;
организация систем сбора и возврата конденсата: закрытого и открытого типов;
структура теплопотребления: с преобладанием технологических или санитарно-технических нагрузок;
характер графика теплопотребления в течение рассматриваемого периода (суток, сезона, года): резко выраженный, равномерный.
От внешних источников пар промышленных параметров (давлением 0,8 - 3,5 МПа) поступает по магистральному паропроводу. При давлении более 3 МПа он направляется к потребителям, минуя центральный тепловой пункт (ЦТП); пар давлением менее 3 МПа из магистрали сначала поступает на ЦТП. Здесь устанавливаются регулирующая арматура, регистрирующие и контрольно-измерительные приборы. Если на производстве используется пар давлением 0,6 - 0,9 МПа, на ЦТП предусматривается редукционная установка (РУ) или редукционно-охладительная установка (РОУ).
Центральный тепловой пункт располагается в одном из производственных зданий или специально отведенном помещении в центре системы распределения пара между потребителями. На крупных промышленных предприятиях с протяженными и разветвленными паровыми сетями устанавливается несколько ЦТП. Выбор места их расположения зависит от распределения нагрузки по территории предприятия и удаленности потребителей.
На рис.32 показана схема подключения котельной к паровой сети через парораспределительный двухступенчатый коллектор. Ступени разделяются редукционным клапаном.
Доля отопительно-вентиляционной нагрузки в общей присоединенной тепловой нагрузке промышленного предприятия непосредственно зависит от профиля данного предприятия. В частности, отопительно-вентиляционные нагрузки крупных нефтехимических предприятий составляют 5 - 7 %, а на химических предприятиях достигают 20 – 30 % общего потребления теплоты. Горячая вода на покрытие этих нужд обычно поступает от центральных внешних и заводских источников теплоты.
Отопление производственных помещений часто совмещается с системой приточной вентиляции. Температура воздуха, поступающего в помещения в отопительный период, повышается от -40 - +10 до 25 - 40°С. Отопление административных помещений организуется по той же схеме, что и объектов коммунально-бытового сектора.
В
настоящее время на некоторых промышленных
предприятиях еще сохранились паровые
отопительные системы, но их постепенно
меняют на водяные. Это продиктовано
следующим: водяные системы позволяют
организовать качественное регулирование
температурного режима отопительных
систем в соответствии с температурой
наружного воздуха и обеспечить лучшие
санитарно-гигиенические условия
отапливаемых помещений.
Сантехнические нагрузки промышленных предприятий составляют 2 - 10% в структуре общего теплопотребления. Присоединение местных потребителей горячей воды к тепловым сетям можно осуществлять по смешанной или последовательной схеме, однако в действительности предпочитают устанавливать специальные пароводяные теплообменники. Это объясняется несоответствием режимов теплофикационных и сантехнических нагрузок. Потребление горячей воды происходит круглогодично, поэтому в длительный летний период, когда отопительно-вентиляционные нагрузки отсутствуют, содержание протяженной сильноразветвленной сети только на нужды горячего водоснабжения оказывается экономически невыгодным. Кроме того, температура воды, требуемой некоторыми технологическими потребителями, оказывается несколько завышенной по отношению к расчетным для открытых или закрытых систем горячего водоснабжения. Например, для отмывания сильно загрязненных техническим маслом или нефтепродуктами деталей требуется горячая вода температурой выше 70°С. В душевых, прачечных, столовых может использоваться вода более низкой температуры — 45 °С. В том случае, когда сантехническая нагрузка обеспечивается местными пароводяными теплообменниками, она учитывается в общей паровой нагрузке предприятия.
