- •Список основной литературы
- •Вопрос 1. Классификация потребителей тепла. Графики тепловых нагрузок. Классификация потребителей тепла. (8, с.51..55)
- •Вопрос 2. Тепловая нагрузка на отопление. (1, с.5..7)
- •Вопрос 3. Тепловая нагрузка на вентиляцию, горячее водоснабжение и технологические нужды. (1, с.7..9) Тепловая нагрузка на вентиляцию.
- •Тепловая нагрузка на горячее водоснабжение.
- •Тепловая нагрузка на технологические нужды.
- •Вопрос 4. Годовой график продолжительности тепловой нагрузки. Коэффициент теплофикации. (1, с.11..14)
- •Вопрос 5. Типы систем теплоснабжения. (1, с.14..18)
- •Вопрос 6. Паровая схема теплоснабжения с возвратом конденсата. (1, с.27-29)
- •6.1. Классификация систем технологического пароснабжения
- •6.3. Паровая схема теплоснабжения
- •6.4. Системы сбора и возврата конденсата
- •Вопрос 7. Гидравлические режимы в водяных тепловых сетях. (1, с.29..32, 4, с.35, лекции)
- •Вопрос 8. Методы регулирования отпуска теплоты. (1, с.33..34)
- •Вопрос 9. Автоматизация отпуска теплоты и причины перерасхода теплоты. (1, с.42..46)
- •Вопрос 10. Системы воздухоснабжения предприятия
- •10.1. Основные потребители сжатого воздуха
- •10.2. Типы компрессоров - преимущества и недостатки
- •10.3. Компрессорная станция
- •10.3.1. Принципиальная схема компрессорной установки
- •10.3.2. Вспомогательное оборудование компрессорной станции
- •10.4. Возможности снижения затрат электроэнергии, потерь воздуха и нерациональных потер давления. Возможные рекомендации по энергосбережению
- •Вопрос 11. Расчет системы отопления.
- •11.1. Уравнение теплового баланса помещения. Расчет тепловых потоков потерь и теплопоступлений. (3, с.3..4, 6..13)
- •11.2. Расчет количества и определение типа отопительных приборов. (3, с.14..17)
- •11.3. Основные правила гидравлического расчета систем водяного отопления. (3, с.17..20)
- •Вопрос 12. Определение тепловой мощности котельной, режимы ее работы, выбор оборудования
- •12.1. Расчет тепловой мощности котельной. Выбор типа и мощности котлоагрегатов. (2, с.44..46)
- •12.2. Методика расчета тепловой схемы и режимы работы котельной. (2, с.46..47)
- •12.3. Выбор сетевых, подпиточных, питательных, рециркуляционных насосов котельной. (2, с.48..49)
- •12.4. Принцип термической деаэрации воды. Основные типы и устройство деаэраторов. (2, с.50..52)
- •12.5. Тягодутьевые машины и дымовые трубы. (2, с.58..59)
- •Вопрос 13. Вторичные энергоресурсы промышленных предприятий и их использование. (3, с.63..68)
- •Вопрос 14. Расчет системы вентиляции. Подбор вентиляторов и калориферов
- •Вопрос 15. Варианты энергоснабжения и энергопотребление промышленных предприятий. (2, с.3..9)
- •Вопрос 26. Полезное использование низкопотенциальных энергоресурсов. Теплонасосные установки
- •Вопрос 29. Возможные энергосберегающие мероприятия в котельных установках.
Вопрос 9. Автоматизация отпуска теплоты и причины перерасхода теплоты. (1, с.42..46)
Среди процессов теплоснабжения (производство тепла, подготовка, транспортировка воды, защита сетей и др.) отпуск теплоты наименее автоматизирован. В связи с этим имеют место дискомфортные условия в отапливаемых помещениях и перерасход теплоты и топлива. Практически отпуск теплоты регулируется качественным методом (по ) только на источнике (центральное регулирование). У немногих объектов применяют регулирование (стабилизацию) температуры горячей воды.
Дискомфорт в отапливаемых помещениях (перегрев в одних и недогрев в других) происходит также вследствие невозможности учета при центральном регулировании действия ветра и солнечной радиации, а также избыточных бытовых тепловыделений.
Причины перерасхода тепла при отсутствии автоматизации.
1. Из-за подержания температуры теплоносителя (60..70оС) в относительно теплый (осенне-весенний) период из-за горячего водоснабжения, хотя такая высокая температура не требуется (перегрев помещения). Перерасход тепла 2-3%.
2. Невозможность учета бытовых тепловыделений. Перерасход до 15-17%.
3. Не учитывается снижение инфильтрации (при повышении температуры наружного воздуха) и влияние ветра (скорости, направления). Последнее возможно только при пофасадном регулировании и экономия может достигать 7%.
4. Не учитывается теплота от солнечной радиации (меньше тепла на солнечный фасад, передача ее на теневой фасад). Это возможно при пофасадном или индивидуальном регулировании и экономия может достигать 4-9%.
5. Отсутствие возможности снижения температуры в жилых домах ночью (на 2-3оС) и в производственных и административно-общественных зданиях ночью и в нерабочие дни (до 10-12оС).
Общая экономия теплоты может составить до 25% годового расхода. Кроме того, автоматизация стабилизирует гидравлический и тепловой режим всей системы.
Отсутствие регуляторов температуры горячей воды приводит к тому, что ее величина не соответствует требуемой (она значительно выше или ниже). В обоих случаях идет перерасход тепла (слив воды потребителями или высокое теплосодержание). Кроме того, дестабилизируется гидравлический режим в тепловой сети и повышается температура обратной воды при отсутствии водоразбора. Вместо регуляторов устанавливаются дроссельные шайбы, рассчитанные на некоторую оптимальную величину водоразбора, но они не могут обеспечить снижение расхода сетевой воды у потребителя при прекращении водоразбора.
Все это вызывает перерасход теплоты в размере 10-15% годового потребления теплоты на горячее водоснабжение.
Внедрение автоматики – реальный путь экономии топлива. Разработаны и внедряются схемы и приборы автоматизации для группового, общедомового, пофасадного и индивидуального регулирования. Как показывают расчеты, при экономии теплоты только на 10% установленное оборудование окупается за 1-1,5 года.
Вопрос 10. Системы воздухоснабжения предприятия
Системы воздухоснабжения промышленных предприятий предназначены для централизованного снабжения промышленных потребителей сжатым воздухом требуемых параметров в соответствии с расходом и графиком. Она включает в себя компрессорные и воздуходувные станции, трубопроводный и баллонный транспорт для подачи сжатого воздуха к потребителям, воздухосборные устройства - ресиверы и распределители самого предприятия.
