
- •2,3 Операционные системы реального времени.
- •Мультипрограммирование
- •Мультипрограммирование в системах разделения времени
- •Мультипрограммирование в системах реального времени
- •Понятия потока («нити») и многопоточности
- •1. Кооперативная и вытесняющая многозадачность. Реализация
- •1) Заносится главная загрузочная запись mbr (Master Boot Record). В ней
- •Общие представления
- •7.1.2. Интерфейсы системы unix
- •7.1.3. Оболочка и утилиты системы unix
Общие представления
Операционная система UNIX представляет собой интерактивную систему, разработанную для одновременной поддержки нескольких процессов и нескольких пользователей. Она была разработана программистами и для программистов, чтобы использовать ее в окружении, в котором большинство пользователей являются относительно опытными и занимаются сложными проектами разработки программного обеспечения. Во многих случаях большое количество программистов активно сотрудничают в деле создания единой системы, поэтому в операционной системе UNIX есть достаточное количество средств, позволяющих программистам работать вместе и управлять совместным использованием общей информации. К настоящему времени существует множество версий системы UNIX (см. раздел 6) и между ними имеются определенные различия. В дальнейшем изложении основное внимание уделяется общим чертам всех версий, а не особенностям какой-либо конкретной версии. Поэтому рассматриваемые вопросы реализации ОС UNIX не всегда в равной степени соответствуют разным версиям.
7.1.2. Интерфейсы системы unix
Операционную систему UNIX можно рассматривать в виде некоторой пирамиды. У основания пирамиды располагается аппаратное обеспечение, состоящее из центрального процессора, памяти, дисков, терминалов и других устройств. Выше над аппаратным обеспечением работает операционная система UNIX. Ее функции заключаются в управлении аппаратным обеспечением и предоставлении всем программам интерфейса системных вызовов. Эти системные вызовы позволяют программам создавать процессы, файлы и прочие ресурсы, а также управлять ими. Программы обращаются к системным вызовам, помещая аргументы в регистры центрального процессора (или иногда в стек) и выполняя команду эмулированного прерывания для переключения из пользовательского режима в режим ядра и передачи управления операционной системе UNIX. Системные вызовы реализуются библиотечные функциями – процедурами. Каждая такая процедура помещает аргументы в нужное место и выполняет команду эмулированного прерывания. Интерфейс библиотечных функций определен в стандарте POSIX. Стандарт POSIX определяет библиотечные процедуры, соответствующие системным вызовам, их параметры, что они должны делать и какой результат возвращать.
Помимо операционной системы и библиотеки системных вызовов, все версии UNIX содержат большое количество стандартных программ, некоторые из них описываются стандартом POSIX 1003.2, тогда как другие могут различаться в разных версиях системы UNIX. К этим программам относятся командный процессор (оболочка), компиляторы, редакторы, программы обработки текста и утилиты для работы с файлами. Именно эти программы и запускаются пользователем с терминала.
Таким образом, можно говорить о трех интерфейсах в операционной системе UNIX: интерфейсе системных вызовов, интерфейсе библиотечных функций и интерфейсе, образованным набором стандартных обслуживающих программ.
7.1.3. Оболочка и утилиты системы unix
У многих версий системы UNIX имеется графический интерфейс пользователя, схожий с популярными интерфейсами, примененными на компьютере Macintosh и впоследствии в системе Windows. Однако истинные программисты до сих пор предпочитают интерфейс командной строки, называемый оболочкой (shell). Подобный интерфейс значительно быстрее в использовании, существенно мощнее и проще расширяется. Ниже будет кратко описана так называемая оболочка Бурна (sh).
Когда оболочка запускается, она инициализируется, а затем печатает на экране символ приглашения к вводу (обычно это знак доллара или процента) и ждет, когда пользователь введет командную строку. После того как пользователь введет командную строку, оболочка извлекает из нее первое слово и ищет файл с таким именем. Если такой файл удается найти, оболочка запускает его. При этом работа оболочки приостанавливается на время работы запущенной программы. По завершении работы программы оболочка снова печатает приглашение и ждет ввода следующей строки. Здесь важно подчеркнуть, что оболочка представляет собой обычную пользовательскую программу. Все, что ей нужно, – это способность ввода с терминала и вывода на терминал, а также возможность запускать другие программы.
Билет 28
(Файловая система NTFS. Структура логического диска под управлением Windows NT)
Система NTFS (New Technology File System – файловая система новой технологии) представляет собой новую сложную файловую систему, разработанную специально для Windows NT и перенесенную в Windows 2000. Эта файловая система не является попыткой улучшить старую файловую систему MS-DOS.
Длина имени файла в системе NTFS ограничена 255 символами, полная длина пути ограничивается 32 767 символами. Файл в системе NTFS – это не просто линейная последовательность байтов, как файлы в системах FAT-32 и UNIX. Вместо этого файл состоит из множества атрибутов, каждый из которых представляется в виде потока байтов. Большинство файлов имеет несколько коротких потоков, таких как имя файла и его 64-битовый идентификатор, плюс один длинный (неименованный) поток с данными. Однако у файла может быть и несколько длинных потоков данных. У каждого потока своя длина. Каждый поток может блокироваться независимо от остальных потоков. Максимальная длина потока составляет 16 экзабайт (2 в степени 64 байт). Для отслеживания местонахождения процесса в каждом потоке используются 64-разрядные файловые указатели.
Вызовы функций Win32 API для управления файлами и каталогами в первом приближении подобны соответствующим им в UNIX, но у функций Win32 API больше параметров и другая модель безопасности. Процедура открытия файла возвращает дескриптор файла, который затем может использоваться для чтения этого файла или записи в файл. Для графических приложений заранее не определены указатели в файлах. Стандартные потоки ввода, вывода и сообщений об ошибках при необходимости должны открываться явно. Однако в консольном режиме они открываются заранее. Интерфейс Win32 также содержит ряд дополнительных вызовов, отсутствующих в системе UNIX.
Каждый том NTFS (то есть дисковый раздел) содержит файлы, каталоги, битовые массивы и другие структуры данных. Каждый том организован как линейная последовательность блоков (кластеров по терминологии Microsoft). Размер блока фиксирован для каждого тома и варьируется в пределах от 512 байт до 64 Кбайт, в зависимости от размера тома. Для большинства дисков NTFS используются блоки размером в 4 Кбайт как компромисс между большими блоками (для эффективности операций чтения/записи) и маленькими блоками (для уменьшения потерь дискового пространства на внутреннюю фрагментацию). Обращение к блокам осуществляется по их смещению от начала тома, для которого используются 64-разрядные числа.
Главной структурой данных в каждом томе является главная файловая таблица MFT (Master File Table), представляющая собой линейную последовательность записей фиксированного (1 Кбайт) размера. Каждая запись MFT описывает один файл или один каталог. В ней содержатся атрибуты файла, такие как его имя и временные штампы, а также список дисковых адресов, указывающих на расположение блоков файла. Если файл очень большой, то иногда бывает необходимо использовать две и более записей главной файловой таблицы, чтобы вместить список всех блоков файла. В этом случае первая запись MFT, называемая базовой записью, указывает на другие записи MFT.
Сама главная файловая таблица представляет собой файл и, как и любой файл, может располагаться в любом месте тома, тем самым устраняется проблема дефектных секторов на первой дорожке дискового раздела. Кроме того, этот файл может при необходимост Файловая система NTFS поддерживает прозрачное сжатие файлов. Файл может быть создан в сжатом режиме. Это означает, что файловая система NTFS будет автоматически пытаться сжать блоки этого файла при записи их на диск и автоматически распаковывать их при чтении. Процессы, читающие этот файл или пишущие в него, не будут даже догадываться о том, что при этом происходит компрессия или декомпрессия данных.
Сжатие данных файла происходит следующим образом. Когда файловая система NTFS записывает на диск файл, помеченный для сжатия, она изучает первые 16 логических блоков файла, независимо от того, сколько сегментов на диске они занимают. Затем к этим блокам применяется алгоритм сжатия. Если полученные на выходе блоки могут поместиться в 15 или менее блоков, то сжатые данные записываются на диск, предпочтительно в виде одного сегмента. Если получить выигрыш хотя бы в один блок не удается, то данные 16 блоков так и записываются в несжатом виде. Затем весь алгоритм повторяется для следующих 16 блоков и т. д.
и возрастать до максимального размера в 248 записей.
Билет 29
(Структура файлов NTFS)
Билет 30
(Структура каталогов NTFS)
Билет 31
(Назначение утилиты тестирования диска. Перечислите логические и физические ошибки, встречающиеся на диске)
Билет 32
(Назначение утилиты дефрагментации диска. Фрагментированный файл, дефрагментация области данных)
Билет 33
(Процесс загрузки ОС)
Процесс загрузки операционной системы
При включении питания компьютера управление передается базовой системе ввода/вывода, BIOS.Она выполняет проверку аппаратных узлов компьютера, формирует начальную часть таблицы векторов прерываний, инициализирует устройства и начинает процесс загрузки операционной системы.
Загрузка начинается с того, что BIOS делает попытку прочитать самый первый сектор дискеты, вставленной в дисковод А: (на загрузочной дискете этот сектор содержит загрузчик операционной системы). Если в дисковод вставлена системная дискета, с нее считывается загрузчик и ему передается управление.
Если дискета не системная, т.е. не содержит загрузочной записи, на экран выдается сообщение с просьбой заменить дискету.
Если же дискеты в дисководе А: вообще нет, то BIOS читает основную загрузочную запись диска С: (Master Boot Record). Обычно это самый первый сектор на диске. Управление передается загрузчику, который находится в этом секторе. Загрузчик анализирует содержимое таблицы разделов (она также находится в этом секторе), выбирает активный раздел и читает загрузочную запись этого раздела. Загрузочная запись активного раздела (Boot Record) аналогична загрузочной записи, находящейся в первом секторе системной дискеты.
Загрузочная запись активного раздела считывает с диска файлы IO.SYS и MSDOS.SYS (именно в этом порядке). Затем считываются и загружаются резидентные драйверы. Начинается формирование связанного списка драйверов устройств. Анализируется содержимое файла CONFIG.SYS, загружаются описанные в этом файле драйверы. Сначала загружаются драйверы, описанные параметром DEVICE, затем (только в MS-DOS версии 4.х и 5.0) резидентные программы, указанные операторами INSTALL. После этого считывается командный процессор и ему передается управление.
Командный процессор состоит из трех частей - резидентной, инициализирующей и транзитной. Первой загружается резидентная часть. Она обрабатывает прерывания INT 22H, INT 23H, INT 24H, управляет загрузкой транзитной части. Эта часть командного процессора обрабатывает ошибки MS-DOS и выдает запрос пользователю о действиях при обнаружении ошибок.
Инициализирующая часть используется только в процессе загрузки операционной системы. Она определяет начальный адрес, по которому будет загружаться пользовательская программа и инициализирует выполнение файла AUTOEXEC.BAT.
Транзитная часть командного процессора располагается в старших адресах памяти. В этой части находятся обработчики внутренних команд MS-DOS и интерпретатор командных файлов с расширением имени .BAT. Транзитная часть выдает системное приглашение (например, А:\> ), ожидает ввода команды оператора с клавиатуры или из пакетного файла и организует их выполнение.
После загрузки командного процессора и выполнения начальных процедур, перечисленных в файле AUTOEXEC.BAT, подготовка системы к работе завершается.