Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОС - ответы.doc
Скачиваний:
112
Добавлен:
15.06.2014
Размер:
743.94 Кб
Скачать

1. Кооперативная и вытесняющая многозадачность. Реализация

многозадачности в Windows 98.

Операционная система Windows 98 является многозадачной (multitasking –

мультизадачной) т. е. она способна «одновременно» выполнять несколько

программ. На самом деле один микропроцессор может выполнять инструкцию

только одной программы. Однако операционная система настолько оперативно

реагирует на потребности той или иной программы, что создается впечатление

одновременности их работы. Например, в процессе подготовки текста можно

параллельно печатать содержимое какого либо файла и проверять на вирус

жесткий диск.

Многозадачность может кооперативной и вытесняющей. При кооперативной

многозадачности (cooperative multitasking) операционная система не

занимается решением проблемы распределения процессорного времени.

Распределяют его сами программы. Причем активная программа самостоятельно

решает, отдавать ли процессор другой программе. Момент передачи управления

здесь зависит от хода выполнения задачи. Таким моментом должен быть

системный вызов, т. е. обращение к системе за какой-либо услугой (ввод или

вывод на внешнее устройство). Фоновым задачам выделяется процессорное время

при простое приоритетной задачи (ожидание нажатия клавиши и др.).

Кооперативная многозадачность была реализована в среде Windows 3.1. В

Windows 98 кооперативная многозадачность обеспечивается для 16-ти разрядных

приложений, т. к. эти приложения, созданные для Windows 3.1 умеют

самостоятельно распределять процессорное время.

При вытесняющей многозадачности (preemptive multitasking) распределением

процессорного времени между программами занимается операционная система.

Она выделяет каждой задаче фиксированный квант времени процессора. По

истечению этого кванта времени система вновь получает управление, чтобы

выбрать другую задачу для ее активизации. Если задача обращается к

операционной системе до истечения ее кванта времени, то это также служит

причиной переключения задач. Такой режим многозадачности Windows 98

реализует для 32-х разрядных приложений, а также для программ написанных

для MS DOS.

Билет 11

(Основные алгоритмы планирования задач: алгоритмы, основанные на квантовании, смешанные алгоритмы. Размер кванта)

Алгоритмы планирования, основанные на квантовании

В основе многих вытесняющих алгоритмов планирования лежит концепция квантования. В соответствии с этой концепцией каждому потоку поочередно для выполнения предоставляется ограниченный непрерывный период процессорного времени — квант. Смена активного потока происходит, если:

 поток завершился и покинул систему;

 произошла ошибка;

 поток перешел в состояние ожидания;

 исчерпан квант процессорного времени, отведенный данному потоку.

Поток, который исчерпал свой квант, переводится в состояние готовности и ожидает, когда ему будет предоставлен новый квант процессорного времени, а на выполнение в соответствии с определенным правилом выбирается новый поток из очереди готовых. Граф состояний потока, изображенный на рис. 4.6, соответствует алгоритму планирования, основанному на квантовании.

Рис. 4.6. Граф состояний потока в системе с квантованием

Кванты, выделяемые потокам, могут быть одинаковыми для всех потоков или различными. Рассмотрим, например, случай, когда всем потокам предоставляются кванты одинаковой длины q (рис. 4.7). Если в системе имеется п потоков, то время, которое поток проводит в ожидании следующего кванта, можно грубо оценить как q(n-l). Чем больше потоков в системе, тем больше время ожидания, тем меньше возможности вести одновременную интерактивную работу нескольким пользователям. Но если величина кванта выбрана очень небольшой, то значение произведения q(n-l) все равно будет достаточно мало для того, чтобы пользователь не ощущал дискомфорта от присутствия в системе других пользователей. Типичное значение кванта в системах разделения времени составляет десятки миллисекунд.

Рис. 4.7. Иллюстрация расчета времени ожидания в очереди

Если квант короткий, то суммарное время, которое проводит поток в ожидании процессора, прямо пропорционально времени, требуемому для его выполнения (то есть времени, которое потребовалось бы для выполнения этого потока при монопольном использовании вычислительной системы). Действительно, поскольку время ожидания между двумя циклами выполнения равно q(n-l), а количество циклов B/q, где В — требуемое время выполнения, то W*B(n-l). Заметим, что эти соотношения представляют собой весьма грубые оценки, основанные на предположении, что В значительно превышает q. При этом не учитывается, что потоки могут использовать кванты не полностью, что часть времени они могут тратить на ввод-вывод, что количество потоков в системе может динамически меняться и т. д.

Чем больше квант, тем выше вероятность того, что потоки завершатся в результате первого же цикла выполнения, и тем менее явной становится зависимость времени ожидания потоков от их времени выполнения. При достаточно большом кванте алгоритм квантования вырождается в алгоритм последовательной обработки, присущий однопрограммным системам, при котором время ожидания задачи в очереди вообще никак не зависит от ее длительности.

Кванты, выделяемые одному потоку, могут быть фиксированной величины, а могут и изменяться в разные периоды жизни потока. Пусть, например, первоначально каждому потоку назначается достаточно большой квант, а величина каждого следующего кванта уменьшается до некоторой заранее заданной величины. В таком случае преимущество получают короткие задачи, которые успевают выполняться в течение первого кванта, а длительные вычисления будут проводиться в фоновом режиме. Можно представить себе алгоритм планирования, в котором каждый следующий квант, выделяемый определенному потоку, больше предыдущего. Такой подход позволяет уменьшить накладные расходы на переключение задач в том случае, когда сразу несколько задач выполняют длительные вычисления.

Потоки получают для выполнения квант времени, но некоторые из них используют его не полностью, например из-за необходимости выполнить ввод или вывод данных. В результате возникает ситуация, когда потоки с интенсивными обращениями к вводу-выводу используют только небольшую часть выделенного им процессорного времени. Алгоритм планирования может исправить эту «несправедливость». В качестве компенсации за неиспользованные полностью кванты потоки получают привилегии при последующем обслуживании. Для этого планировщик создает две очереди готовых потоков (рис. 4.8). Очередь 1 образована потоками, которые пришли в состояние готовности в результате исчерпания кванта времени, а очередь 2 — потоками, у которых завершилась операция ввода-вывода. При выборе потока для выполнения прежде всего просматривается вторая очередь, и только если она пуста, квант выделяется потоку из первой очереди.

Многозадачные ОС теряют некоторое количество процессорного времени для выполнения вспомогательных работ во время переключения контекстов задач. При этом запоминаются и восстанавливаются регистры, флаги и указатели стека, а также проверяется статус задач для передачи управления. Затраты на эти вспомогательные действия не зависят от величины кванта времени, поэтому чем больше квант, тем меньше суммарные накладные расходы, связанные с переключением потоков.

Рис. 4.8. Квантование с предпочтением потоков, интенсивно обращающихся к вводу-выводу

ПРИМЕЧАНИЕ 

В алгоритмах, основанных на квантовании, какую бы цель они не преследовали (предпочтение коротких или длинных задач, компенсация недоиспользованного кванта или минимизация накладных расходов, связанных с переключениями), не используется никакой предварительной информации о задачах. При поступлении задачи на обработку ОС не имеет никаких сведений о том, является ли она короткой или длинной, насколько интенсивными будут ее запросы к устройствам ввода-вывода, насколько важно ее быстрое выполнение и т. д. Дифференциация обслуживания при квантовании базируется на «истории существования» потока в системе.

Билет 12

(Основные алгоритмы планирования задач: алгоритмы, основанные на приоритетах. Приоритеты задач: статические (фиксированные) и динамические. Обслуживание с относительными и абсолютными приоритетами)

Алгоритмы планирования, основанные на приоритетах

Другой важной концепцией, лежащей в основе многих вытесняющих алгоритмов планирования, является приоритетное обслуживание. Приоритетное обслуживание предполагает наличие у потоков некоторой изначально известной характеристики — приоритета, на основании которой определяется порядок их выполнения. Приоритет — это число, характеризующее степень привилегированности потока при использовании ресурсов вычислительной машины, в частности процессорного времени: чем выше приоритет, тем выше привилегии, тем меньше времени будет проводить поток в очередях.

Приоритет может выражаться целым или дробным, положительным или отрицательным значением. В некоторых ОС принято, что приоритет потока тем выше, чем больше (в арифметическом смысле) число, обозначающее приоритет. В других системах, наоборот, чем меньше число, тем выше приоритет.

В большинстве операционных систем, поддерживающих потоки, приоритет потока непосредственно связан с приоритетом процесса, в рамках которого выполняется данный поток. Приоритет процесса назначается операционной системой при его создании. Значение приоритета включается в описатель процесса и используется при назначении приоритета потокам этого процесса. При назначении приоритета вновь созданному процессу ОС учитывает, является этот процесс системным или прикладным, каков статус пользователя, запустившего процесс, было ли явное указание пользователя на присвоение процессу определенного уровня приоритета. Поток может быть инициирован не только по команде пользователя, но и в результате выполнения системного вызова другим потоком. В этом случае при назначении приоритета новому потоку ОС должна принимать во внимание значение параметров системного вызова.

Во многих ОС предусматривается возможность изменения приоритетов в течение жизни потока. Изменение приоритета могут происходить по инициативе самого потока, когда он обращается с соответствующим вызовом к операционной системе, или по инициативе пользователя, когда он выполняет соответствующую команду. Кроме того, ОС сама может изменять приоритеты потоков в зависимости от ситуации, складывающейся в системе. В последнем случае приоритеты называются динамическими в отличие от неизменяемых, фиксированных, приоритетов.

От того, какие приоритеты назначены потокам, существенно зависит эффективность работы всей вычислительной системы. В современных ОС во избежание разбалансировки системы, которая может возникнуть при неправильном назначении приоритетов, возможности пользователей влиять на приоритеты процессов и потоков стараются ограничивать. При этом обычные пользователи, как правило, не имеют права повышать приоритеты своим потокам, это разрешено делать (да и то в определенных пределах) только администраторам. В большинстве же случаев ОС присваивает приоритеты потокам по умолчанию.

В качестве примера рассмотрим схему назначения приоритетов потокам, принятую в операционной системе Windows NT (рис. 4.9). В системе определено 32 уровня приоритетов и два класса потоков — потоки реального времени и потоки с переменными приоритетами. Диапазон от 1 до 15 включительно отведен для потоков с переменными приоритетами, а от 16 до 31 — для более критичных ко времени потоков реального времени (приоритет 0 зарезервирован для системных целей).

Рис. 4.9. Схема назначения приоритетов в Windows NT

При создании процесса он в зависимости от класса получает по умолчанию базовый приоритет в верхней5 или нижней части диапазона. Базовый приоритет процесса в дальнейшем может быть повышен или понижен операционной системой. Первоначально Поток получает значение базового приоритета из диапазона базового приоритета процесса, в котором он был создан. Пусть, например, значение базового приоритета некоторого процесса равно К. Тогда все потоки данного процесса получат базовые приоритеты из диапазона [К-2, К+2]. Отсюда видно, что, изменяя базовый приоритет процесса, ОС может влиять на базовые приоритеты его потоков.

В Windows NT с течением времени приоритет потока, относящегося к классу потоков с переменными приоритетами, может отклоняться от базового приоритета потока, причем эти изменения могут быть не связаны с изменениями базового приоритета процесса. ОС может повышать приоритет потока (который в этом случае называется динамическим) в тех случаях, когда поток не полностью использовал отведенный ему квант, или понижать приоритет, если квант был использован полностью. ОС наращивает приоритет дифференцирование в зависимости от того, какого типа событие не дало потоку полностью использовать квант. В частности, ОС повышает приоритет в большей степени потокам, которые ожидают ввода с клавиатуры (интерактивным приложениям) и в меньшей степени — потокам, выполняющим дисковые операции. Именно на основе динамических приоритетов осуществляется планирование потоков. Начальной точкой отсчета для динамического приоритета является значение базового приоритета потока. Значение динамического приоритета потока ограничено снизу его базовым приоритетом, верхней же границей является нижняя граница диапазона приоритетов реального времени.

Существуют две разновидности приоритетного планирования: обслуживание с относительными приоритетами и обслуживание с абсолютными приоритетами.

В обоих случаях выбор потока на выполнение из очереди готовых осуществляется одинаково: выбирается поток, имеющий наивысший приоритет. Однако проблема определения момента смены активного потока решается по-разному. В системах с относительными приоритетами активный поток выполняется до тех пор, пока он сам не покинет процессор, перейдя в состояние ожидания (или же произойдет ошибка, или поток завершится). На рис. 4.10, а показан граф состояний потока в системе с относительными приоритетами.

В системах с абсолютными приоритетами выполнение активного потока прерывается кроме указанных выше причин, еще при одном условии: если в очереди готовых потоков появился поток, приоритет которого выше приоритета активного потока. В этом случае прерванный поток переходит в состояние готовности (рис. 4.10, б).

В системах, в которых планирование осуществляется на основе относительных приоритетов, минимизируются затраты на переключения процессора с одной работы на другую. С другой стороны, здесь могут возникать ситуации, когда одна задача занимает процессор долгое время. Ясно, что для систем разделения времени и реального времени такая дисциплина обслуживания не подходит: интерактивное приложение может ждать своей очереди часами, пока вычислительной задаче не потребуется ввод-вывод. А вот в системах пакетной обработки (в том числе известной ОС OS/360) относительные приоритеты используются широко.

Рис. 4.10. Графы состояний потоков в системах с относительными и абсолютными приоритетами

В системах с абсолютными приоритетами время ожидания потока в очередях может быть сведено к минимуму, если ему назначить самый высокий приоритет. Такой поток будет вытеснять из процессора все остальные потоки (кроме потоков, имеющих такой же наивысший приоритет). Это делает планирование на основе абсолютных приоритетов подходящим для систем управления объектами, в которых важна быстрая реакция на событие.

Билет 13

(Функции ОС по управлению памятью. Типы адресов: символьные, виртуальные и физические. Виртуальное адресное пространство процесса)

Управление памятью

Память является важнейшим ресурсом, требующим тщательного управления со стороны мультипрограммной операционной системы. Распределению подлежит вся оперативная память, не занятая операционной системой. Обычно ОС располагается в самых младших адресах, однако может занимать и самые старшие адреса. Функциями ОС по управлению памятью являются: отслеживание свободной и занятой памяти, выделение памяти процессам и освобождение памяти при завершении процессов, вытеснение процессов из оперативной памяти на диск, когда размеры основной памяти не достаточны для размещения в ней всех процессов, и возвращение их в оперативную память, когда в ней освобождается место, а также настройка адресов программы на конкретную область физической памяти.

Типы адресов

Для идентификации переменных и команд используются символьные имена (метки), виртуальные адреса и физические адреса (рисунок 2.7).

Символьные имена присваивает пользователь при написании программы на алгоритмическом языке или ассемблере.

Виртуальные адреса вырабатывает транслятор, переводящий программу на машинный язык. Так как во время трансляции в общем случае не известно, в какое место оперативной памяти будет загружена программа, то транслятор присваивает переменным и командам виртуальные (условные) адреса, обычно считая по умолчанию, что программа будет размещена, начиная с нулевого адреса. Совокупность виртуальных адресов процесса называется виртуальным адресным пространством. Каждый процесс имеет собственное виртуальное адресное пространство. Максимальный размер виртуального адресного пространства ограничивается разрядностью адреса, присущей данной архитектуре компьютера, и, как правило, не совпадает с объемом физической памяти, имеющимся в компьютере.

Физические адреса соответствуют номерам ячеек оперативной памяти, где в действительности расположены или будут расположены переменные и команды. Переход от виртуальных адресов к физическим может осуществляться двумя способами. В первом случае замену виртуальных адресов на физические делает специальная системная программа - перемещающий загрузчик. Перемещающий загрузчик на основании имеющихся у него исходных данных о начальном адресе физической памяти, в которую предстоит загружать программу, и информации, предоставленной транслятором об адресно-зависимых константах программы, выполняет загрузку программы, совмещая ее с заменой виртуальных адресов физическими.

Применяя сегментный способ адресации, на стадии компилятор создает правильные адресацию по сегменту, а CPU (i386) преобразует сегментные адреса на физические. При загрузке модуля загрузчик модулей ни чего не меняет в адресах (экономиться время). И расоложение сегмента в памяти ни как не сказывается на адресации. Сегмент можно двигать по памяти.

Второй способ заключается в том, что программа загружается в память в неизмененном виде в виртуальных адресах, при этом операционная система фиксирует смещение действительного расположения программного кода относительно виртуального адресного пространства. Во время выполнения программы при каждом обращении к оперативной памяти выполняется преобразование виртуального адреса в физический. Второй способ является более гибким, он допускает перемещение программы во время ее выполнения, в то время как перемещающий загрузчик жестко привязывает программу к первоначально выделенному ей участку памяти. Вместе с тем использование перемещающего загрузчика уменьшает накладные расходы, так как преобразование каждого виртуального адреса происходит только один раз во время загрузки, а во втором случае - каждый раз при обращении по данному адресу.

В некоторых случаях (обычно в специализированных системах), когда заранее точно известно, в какой области оперативной памяти будет выполняться программа, транслятор выдает исполняемый код сразу в физических адресах

Билет 14

(Классификация алгоритмов распределения памяти. Понятие виртуальной памяти. Свопинг)

Понятие виртуальной памяти

Уже достаточно давно пользователи столкнулись с проблемой размещения в памяти программ, размер которых превышал имеющуюся в наличии свободную память. Решением было разбиение программы на части, называемые оверлеями. 0-ой оверлей начинал выполняться первым. Когда он заканчивал свое выполнение, он вызывал другой оверлей. Все оверлеи хранились на диске и перемещались между памятью и диском средствами операционной системы. Однако разбиение программы на части и планирование их загрузки в оперативную память должен был осуществлять программист.

Развитие методов организации вычислительного процесса в этом направлении привело к появлению метода, известного под названием виртуальная память. Виртуальным называется ресурс, который пользователю или пользовательской программе представляется обладающим свойствами, которыми он в действительности не обладает. Так, например, пользователю может быть предоставлена виртуальная оперативная память, размер которой превосходит всю имеющуюся в системе реальную оперативную память. Пользователь пишет программы так, как будто в его распоряжении имеется однородная оперативная память большого объема, но в действительности все данные, используемые программой, хранятся на одном или нескольких разнородных запоминающих устройствах, обычно на дисках, и при необходимости частями отображаются в реальную память.

Таким образом, виртуальная память - это совокупность программно-аппаратных средств, позволяющих пользователям писать программы, размер которых превосходит имеющуюся оперативную память; для этого виртуальная память решает следующие задачи:

размещает данные в запоминающих устройствах разного типа, например, часть программы в оперативной памяти, а часть на диске;

перемещает по мере необходимости данные между запоминающими устройствами разного типа, например, подгружает нужную часть программы с диска в оперативную память;

преобразует виртуальные адреса в физические.

Все эти действия выполняются автоматически, без участия программиста, то есть механизм виртуальной памяти является прозрачным по отношению к пользователю.

Наиболее распространенными реализациями виртуальной памяти является страничное, сегментное и странично-сегментное распределение памяти, а также свопинг.

Свопинг

Разновидностью виртуальной памяти является свопинг.

На рисунке 2.16 показан график зависимости коэффициента загрузки процессора в зависимости от числа одновременно выполняемых процессов и доли времени, проводимого этими процессами в состоянии ожидания ввода-вывода.

Рис. 2.16. Зависимость загрузки процессора от числа задач и интенсивности ввода-вывода

Из рисунка видно, что для загрузки процессора на 90% достаточно всего трех счетных задач. Однако для того, чтобы обеспечить такую же загрузку интерактивными задачами, выполняющими интенсивный ввод-вывод, потребуются десятки таких задач. Необходимым условием для выполнения задачи является загрузка ее в оперативную память, объем которой ограничен. В этих условиях был предложен метод организации вычислительного процесса, называемый свопингом. В соответствии с этим методом некоторые процессы (обычно находящиеся в состоянии ожидания) временно выгружаются на диск. Планировщик операционной системы не исключает их из своего рассмотрения, и при наступлении условий активизации некоторого процесса, находящегося в области свопинга на диске, этот процесс перемещается в оперативную память. Если свободного места в оперативной памяти не хватает, то выгружается другой процесс.

При свопинге, в отличие от рассмотренных ранее методов реализации виртуальной памяти, процесс перемещается между памятью и диском целиком, то есть в течение некоторого времени процесс может полностью отсутствовать в оперативной памяти. Существуют различные алгоритмы выбора процессов на загрузку и выгрузку, а также различные способы выделения оперативной и дисковой памяти загружаемому процессу.

Билет 15

(Методы распределения памяти с использованием дискового пространства. Страничное распределение)

Страничное распределение

На рисунке 2.12 показана схема страничного распределения памяти. Виртуальное адресное пространство каждого процесса делится на части одинакового, фиксированного для данной системы размера, называемые виртуальными страницами. В общем случае размер виртуального адресного пространства не является кратным размеру страницы, поэтому последняя страница каждого процесса дополняется фиктивной областью.

Вся оперативная память машины также делится на части такого же размера, называемые физическими страницами (или блоками).

Размер страницы обычно выбирается равным степени двойки: 512, 1024 и т.д., это позволяет упростить механизм преобразования адресов.

При загрузке процесса часть его виртуальных страниц помещается в оперативную память, а остальные - на диск. Смежные виртуальные страницы не обязательно располагаются в смежных физических страницах. При загрузке операционная система создает для каждого процесса информационную структуру - таблицу страниц, в которой устанавливается соответствие между номерами виртуальных и физических страниц для страниц, загруженных в оперативную память, или делается отметка о том, что виртуальная страница выгружена на диск. Кроме того, в таблице страниц содержится управляющая информация, такая как признак модификации страницы, признак невыгружаемости (выгрузка некоторых страниц может быть запрещена), признак обращения к странице (используется для подсчета числа обращений за определенный период времени) и другие данные, формируемые и используемые механизмом виртуальной памяти.

Рис. 2.12. Страничное распределение памяти

При активизации очередного процесса в специальный регистр процессора загружается адрес таблицы страниц данного процесса.

При каждом обращении к памяти происходит чтение из таблицы страниц информации о виртуальной странице, к которой произошло обращение. Если данная виртуальная страница находится в оперативной памяти, то выполняется преобразование виртуального адреса в физический. Если же нужная виртуальная страница в данный момент выгружена на диск, то происходит так называемое страничное прерывание. Выполняющийся процесс переводится в состояние ожидания, и активизируется другой процесс из очереди готовых. Параллельно программа обработки страничного прерывания находит на диске требуемую виртуальную страницу и пытается загрузить ее в оперативную память. Если в памяти имеется свободная физическая страница, то загрузка выполняется немедленно, если же свободных страниц нет, то решается вопрос, какую страницу следует выгрузить из оперативной памяти.

В данной ситуации может быть использовано много разных критериев выбора, наиболее популярные из них следующие:

дольше всего не использовавшаяся страница,

первая попавшаяся страница,

страница, к которой в последнее время было меньше всего обращений.

В некоторых системах используется понятие рабочего множества страниц. Рабочее множество определяется для каждого процесса и представляет собой перечень наиболее часто используемых страниц, которые должны постоянно находиться в оперативной памяти и поэтому не подлежат выгрузке.

После того, как выбрана страница, которая должна покинуть оперативную память, анализируется ее признак модификации (из таблицы страниц). Если выталкиваемая страница с момента загрузки была модифицирована, то ее новая версия должна быть переписана на диск. Если нет, то она может быть просто уничтожена, то есть соответствующая физическая страница объявляется свободной.

Рассмотрим механизм преобразования виртуального адреса в физический при страничной организации памяти (рисунок 2.13).

Виртуальный адрес при страничном распределении может быть представлен в виде пары (p, s), где p - номер виртуальной страницы процесса (нумерация страниц начинается с 0), а s - смещение в пределах виртуальной страницы. Учитывая, что размер страницы равен 2 в степени к, смещение s может быть получено простым отделением k младших разрядов в двоичной записи виртуального адреса. Оставшиеся старшие разряды представляют собой двоичную запись номера страницы p.

Рис. 2.13. Механизм преобразования виртуального адреса в физический при страничной организации памяти

При каждом обращении к оперативной памяти аппаратными средствами выполняются следующие действия:

на основании начального адреса таблицы страниц (содержимое регистра адреса таблицы страниц), номера виртуальной страницы (старшие разряды виртуального адреса) и длины записи в таблице страниц (системная константа) определяется адрес нужной записи в таблице,

из этой записи извлекается номер физической страницы,

к номеру физической страницы присоединяется смещение (младшие разряды виртуального адреса).

Использование в пункте (3) того факта, что размер страницы равен степени 2, позволяет применить операцию конкатенации (присоединения) вместо более длительной операции сложения, что уменьшает время получения физического адреса, а значит повышает производительность компьютера.

На производительность системы со страничной организацией памяти влияют временные затраты, связанные с обработкой страничных прерываний и преобразованием виртуального адреса в физический. При часто возникающих страничных прерываниях система может тратить большую часть времени впустую, на свопинг страниц. Чтобы уменьшить частоту страничных прерываний, следовало бы увеличивать размер страницы. Кроме того, увеличение размера страницы уменьшает размер таблицы страниц, а значит уменьшает затраты памяти. С другой стороны, если страница велика, значит велика и фиктивная область в последней виртуальной странице каждой программы. В среднем на каждой программе теряется половина объема страницы, что в сумме при большой странице может составить существенную величину. Время преобразования виртуального адреса в физический в значительной степени определяется временем доступа к таблице страниц. В связи с этим таблицу страниц стремятся размещать в "быстрых" запоминающих устройствах. Это может быть, например, набор специальных регистров или память, использующая для уменьшения времени доступа ассоциативный поиск и кэширование данных.

Страничное распределение памяти может быть реализовано в упрощенном варианте, без выгрузки страниц на диск. В этом случае все виртуальные страницы всех процессов постоянно находятся в оперативной памяти. Такой вариант страничной организации хотя и не предоставляет пользователю виртуальной памяти, но почти исключает фрагментацию за счет того, что программа может загружаться в несмежные области, а также того, что при загрузке виртуальных страниц никогда не образуется остатков.

Билет 16

(Сегментное распределение памяти. Сегментно - страничное распределение).

Сегментное распределение

При страничной организации виртуальное адресное пространство процесса делится механически на равные части. Это не позволяет дифференцировать способы доступа к разным частям программы (сегментам), а это свойство часто бывает очень полезным. Например, можно запретить обращаться с операциями записи и чтения в кодовый сегмент программы, а для сегмента данных разрешить только чтение. Кроме того, разбиение программы на "осмысленные" части делает принципиально возможным разделение одного сегмента несколькими процессами. Например, если два процесса используют одну и ту же математическую подпрограмму, то в оперативную память может быть загружена только одна копия этой подпрограммы.

Рассмотрим, каким образом сегментное распределение памяти реализует эти возможности (рисунок 2.14). Виртуальное адресное пространство процесса делится на сегменты, размер которых определяется программистом с учетом смыслового значения содержащейся в них информации. Отдельный сегмент может представлять собой подпрограмму, массив данных и т.п. Иногда сегментация программы выполняется по умолчанию компилятором.

При загрузке процесса часть сегментов помещается в оперативную память (при этом для каждого из этих сегментов операционная система подыскивает подходящий участок свободной памяти), а часть сегментов размещается в дисковой памяти. Сегменты одной программы могут занимать в оперативной памяти несмежные участки. Во время загрузки система создает таблицу сегментов процесса (аналогичную таблице страниц), в которой для каждого сегмента указывается начальный физический адрес сегмента в оперативной памяти, размер сегмента, правила доступа, признак модификации, признак обращения к данному сегменту за последний интервал времени и некоторая другая информация. Если виртуальные адресные пространства нескольких процессов включают один и тот же сегмент, то в таблицах сегментов этих процессов делаются ссылки на один и тот же участок оперативной памяти, в который данный сегмент загружается в единственном экземпляре.

Рис. 2.14. Распределение памяти сегментами

Система с сегментной организацией функционирует аналогично системе со страничной организацией: время от времени происходят прерывания, связанные с отсутствием нужных сегментов в памяти, при необходимости освобождения памяти некоторые сегменты выгружаются, при каждом обращении к оперативной памяти выполняется преобразование виртуального адреса в физический. Кроме того, при обращении к памяти проверяется, разрешен ли доступ требуемого типа к данному сегменту.

Виртуальный адрес при сегментной организации памяти может быть представлен парой (g, s), где g - номер сегмента, а s - смещение в сегменте. Физический адрес получается путем сложения начального физического адреса сегмента, найденного в таблице сегментов по номеру g, и смещения s.

Недостатком данного метода распределения памяти является фрагментация на уровне сегментов и более медленное по сравнению со страничной организацией преобразование адреса.

Странично-сегментное распределение

Как видно из названия, данный метод представляет собой комбинацию страничного и сегментного распределения памяти и, вследствие этого, сочетает в себе достоинства обоих подходов. Виртуальное пространство процесса делится на сегменты, а каждый сегмент в свою очередь делится на виртуальные страницы, которые нумеруются в пределах сегмента. Оперативная память делится на физические страницы. Загрузка процесса выполняется операционной системой постранично, при этом часть страниц размещается в оперативной памяти, а часть на диске. Для каждого сегмента создается своя таблица страниц, структура которой полностью совпадает со структурой таблицы страниц, используемой при страничном распределении. Для каждого процесса создается таблица сегментов, в которой указываются адреса таблиц страниц для всех сегментов данного процесса. Адрес таблицы сегментов загружается в специальный регистр процессора, когда активизируется соответствующий процесс.

Билет 17

(Функции ОС по управлению файлами и устройствами).

Билет 18

(Имена файлов. Типы файлов: обычные файлы, специальные файлы, каталоги. Иерархическая структура файловой системы).

Под файлом обычно понимают набор данных, организованных в виде совокупности записей одинаковой структуры. Для управления этими дан­ными создаются соответствующие системы управления файлами. Возможность иметь дело с логическим уровнем структуры данных и операций, выполняемых над ними в процессе их обработки, предоставляет файловая система. Таким об­разом, файловая система – это набор спецификаций и соответствующее им про­граммное обеспечение, которые отвечают за создание, уничтожение, организацию, чтение, запись, модификацию и перемещение файловой информации, а также за управление доступом к файлам и за управление ресурсами, которые используют­ся файлами. Именно файловая система определяет способ организации данных на диске или на каком-нибудь ином носителе данных.

Файлы бывают разных типов: обычные файлы, специальные файлы, файлы-каталоги.

Обычные файлы в свою очередь подразделяются на текстовые и двоичные. Текстовые файлы состоят из строк символов, представленных в ASCII-коде. Это могут быть документы, исходные тексты программ и т.п. Текстовые файлы можно прочитать на экране и распечатать на принтере. Двоичные файлы не используют ASCII-коды, они часто имеют сложную внутреннюю структуру, например, объектный код программы или архивный файл. Все операционные системы должны уметь распознавать хотя бы один тип файлов – их собственные исполняемые файлы.

Специальные файлы – это файлы, ассоциированные с устройствами ввода-вывода, которые позволяют пользователю выполнять операции ввода-вывода, используя обычные команды записи в файл или чтения из файла. Эти команды обрабатываются вначале программами файловой системы, а затем на некотором этапе выполнения запроса преобразуются ОС в команды управления соответствующим устройством. Специальные файлы, так же как и устройства ввода-вывода, делятся на блок-ориентированные и байт-ориентированные.

Каталог – это, с одной стороны, группа файлов, объединенных пользователем исходя из некоторых соображений (например, файлы, содержащие программы игр, или файлы, составляющие один программный пакет), а с другой стороны – это файл, содержащий системную информацию о группе файлов, его составляющих. В каталоге содержится список файлов, входящих в него, и устанавливается соответствие между файлами и их характеристиками (атрибутами).

В разных файловых системах могут использоваться в качестве атрибутов файлов разные характеристики, такие, например, как информация о разрешенном доступе, пароль для доступа к файлу, владелец файла, создатель файла, признак «только для чтения», признак «скрытый файл», признак «системный файл», признак «архивный файл», признак «двоичный/символьный», признак «временный», признак блокировки, длина записи, указатель на ключевое поле в записи, длина ключа, время создания, время последнего доступа, время последнего изменения, текущий размер файла, максимальный размер файла.

Каталог файлов - оглавление файлов, доступное пользователю посредством командного языка операционной системы. Обычно система файловых каталогов имеет иерархическую структуру, и каталог файлов может дополнительно содержать (указатель на) каталог более низкого уровня (подкаталог).

Билет 19

(Маршрут (путь) к файлу. Полное имя файла. Атрибуты файлов (в широком смысле)).

Чтобы однозначно определить адрес файла на компьютере, необходимо знать:

Путь к папке, где находится файл (аналог адреса квартиры человека);

Имя файла в этой папке (аналог ФИО человека).

Имя файла необходимо для того, чтобы по нему (по имени) обратится к файлу на диске. В одной папке не может быть двух файлов с одинаковыми именами, в разных папках это допустимо.

Полное имя файла (полный путь к файлу) в Windows системах состоит из буквы диска, после которого ставится двоеточие и наклонная черта (обратный слеш), затем через обратные слеши перечисляются подкаталоги, в конце пишется имя файла. Строка завершается символом NULL. Пример:

C:\Windows\System32\calc.exe

в *nix системах полный путь состоит из слеша (/), обозначающего корневой каталог, после которого через слеши перечисляются подкаталоги, в конце пишется имя файла. Пример:

/usr/local/bin/gcc

Имя файла состоит из двух частей, разделенных точкой:

Название (до точки, часто также называют именем);

Расширение (необязательная часть).

Полное имя файла (включая расширение) в Windows может содержать до 260 символов, данное значение определено константой MAX_PATH в Windows API; например максимально допустимое полное имя файла на диске C будет таким «C:\<256 символов>NULL». Однако юникод версии некоторых функций позволяют использовать имена файлов содержащие до 32000 символов, такие имена начинаются с префикса «\\?\». Пример:

\\?\C:\Windows\System32\calc.exe

При использовании префикса «\\?\» необходимо указывать абсолютный путь к файлу, относительные пути не допускаются. При использовании относительных путей максимальное полное имя файла ограничено константой MAX_PATH (260 символов).

В имени файла запрещено использование некоторых служебных символов: «\», «/», «:»(только в Windows - в Linux этот символ в имени разрешён), «*», «?», «"», «<», «>», «|».

Название файлу (до точки) следует давать осмысленное, говорящее о назначении файла, дабы избежать путаницы в дальнейшем.

Расширение файла

Расширение файла может вообще отсутствовать или быть любой длины (в пределах длины имени файла). Расширение определяет тип (формат) файла, то есть по расширению пользователь и ОС определяют тип данных, хранящихся в файле. Например, в Windows, файлы с расширением bmp — несжатые изображения, jpg — сжатые изображения.

Все файлы на компьютере можно условно поделить на:

программы (исполняемые файлы);

документы.

Только программы умеют что то «делать»: создавать (документы), просматривать (документы) изменять (документы). Документ же — результат работы программы, сохраненный на диск. Документы ничего делать не умеют, это просто данные на диске. Чтобы просмотреть или изменить документ, необходимо, чтобы была установлена программа, умеющая работать с этим типом документа. Если такой программы не будет установлено, ОС не сможет открыть файл.

Например, в ОС Windows для программ используются расширения exe и com. Файлы с другими расширениями можно считать документами.

Билет 20

(Возможные способы размещения (адресации) файлов на логическом диске (разделе) (на примере ФС FAT, ufs, NTFS). Достоинства и недостатки)

Билет 21

(Физическая и логическая структура магнитного диска, MBR, PT)

Винчестеры, как и другие магнитные накопители с прямым доступом, имеют дорожковую организацию дисковой памяти. Это означает, что поверхность магнитных дисков разбивается на концентрические кольца разного диаметра – дорожки, начиная с внешнего края. Далее структуру информации на винчестере следует рассматривать отдельно с точки зрения физической и логической структур. Чаще всего путаница возникает при сравнении параметров, относящихся к различным структурам.

Физическая структура

С физической точки зрения обе поверхности всех магнитных дисков в массиве-пакете содержат дорожки. BIOS не определяет, к какому конкретно «блину» относится та или иная дорожка, поэтому все поверхности пронумерованы единой сквозной нумерацией. Каждой рабочей поверхности соответствует своя головка, по которым, собственно говоря, поверхности и нумеруются (параметр heads). Физически максимально допустимое число головок за всю историю производства винчестеров было равно 11, но в современных накопителях более 6 головок не используется. В используемых ныне магнитных дисках число дорожек равно 80, а число дорожек жесткого диска достигает нескольких тысяч. Дорожки, как и головки, идентифицируются номером (внешняя дорожка и верхняя головка имеет нулевой номер). Количество дорожек на диске определяется поверхностной плотностью записи.

Дорожки, в свою очередь, разбиваются на сектора, являющие минимальными физическими элементами хранения и адресации данных. Чаще всего, сектора на каждой дорожке имеют фиксированный угловой размер, благодаря чему на всех дорожках располагается одинаковое количество секторов. Каждая дорожка дискеты 3,5” содержит 18 секторов. Жесткий диск имеет обычно от 17 до 63 секторов (так считает BIOS). Реально же на дорожке современного накопителя содержится около 100 секторов, а максимальное их количество равно 256. Размер сектора определен в 512 байт. Нумерация секторов на дорожке начинается с единицы, а не с нуля, в отличие от головок и цилиндров.

Каждый сектор несет не только данные, но и служебную информацию. В начале каждого сектора записывается его заголовок (prefix), по которому определяется начало и номер сектора, а в конце – заключение (suffix), в котором находится контрольная сумма (checksum, CRC), необходимая для проверки целостности данных. Заголовок сектора включает в себя идентификатор (ID) сектора, первую CRC (контрольная сумма) и интервал включения записи. Идентификатор содержит информацию о номере цилиндра, головки и сектора. Далее следует интервал включения записи, после которого следует 512 байт данных. За данными располагается вторая CRC и интервал между записями (секторами), необходимый для того, чтобы застраховать следующий сектор от записи на предыдущий. Это может произойти из-за неравномерной скорости вращения диска. Завершает сектор прединдексный интервал, который имеет размер от 693 байт, служит для компенсации неравномерности скорости вращения диска. Таким образом, размер сектора увеличивается до 571 байта, из которых 512 байт составляют данные.

Вся эта информация записывается на заводе при низкоуровневом (LowLewel) форматировании, используя специальные программные средства (например, Speed Store или Disk Manager) или команды DOS. Кроме промежутков между секторами существуют еще и промежутки между самими дорожками. Префиксы, суффиксы и промежутки как раз и составляют то пространство диска, которое теряется при форматировании.

Сектора, находящие друг над другом в пакете дисков, на которые одновременно может быть спозиционирован пакет головок, называется цилиндром. В связи с тем, что накопитель имеет несколько дисков, расположен­ных друг под другом, разбиения дисков идентичны. Поэтому при рассмот­рении жестких дисков чаще говорят о цилиндрах, чем о дорожках.

Логическая структура

Кроме того, что накопитель должен быть сконфигурирован в CMOS, его логическую структуру должна понимать операционная система. Для обращения к информации используется кластер (allocation unit) – минимальная логическая единица доступа к информации. Каждый кластер состоит из нескольких секторов (8 и более). Каждый кластер пронумерован и может быть либо свободен, либо монопольно занят для хранения определенного файла, даже если не все сектора внутри его заняты. Следовательно, даже файл размером несколько байт требует целого кластера. В результате, на каждом файле теряется около половины кластера. Чем больше размер кластера, тем больше потери. Использование кластеров позволяет ускорить работу, так количество кластеров существенно меньше количества секторов.

Нумерация кластеров не соответствует их порядковому расположению на дисках. При работе используется тот факт, что при записи данных используются все сектора, которые на данный момент находятся под всеми головками, таким образом, заполняется цилиндр. Прежде чем перейти к следующему цилиндру, заполняется текущий чтобы иметь возможность считывать как можно больше информации без перемещения головок.

Билет 22

(Подготовка магнитного (гибкого и жесткого) диска к работе. Разделы диска)

Рассмотрим форматирование дискеты с помощью команд DOS – FORMAT

FORMAT – команда DOS для форматирования дисков. На дискетах они

выполняют низкоуровневое и высокоуровневое форматирование, на жестких

дисках – только высокоуровневое . Диск проверяется на наличие дефектов, и

создается таблица размещения файлов (FAT-таблица), в которой указаны

свободные не дефектные ячейки памяти (кластеры) для хранения информации.

Основное правило форматирование дискет – дисководы форматируют дискету

в своем основном режиме, если не поставить в команде FORMAT дополнительные

ключи, т.е. если дискету 1,44” (HD) вставить в дисковод 1,44” (HD), и

написать в командной строке FORMAT A:, то дискета будет отформатирована на

1,44”. Исключением является дисковод на 2,88 Мв, в котором устанавливается

активный датчик типа дискеты. Как правило дисковод на 2,88 Мв

устанавливается с включенным датчиком , т е. Датчик типа дискеты сообщит

DOS о том, какая дискета вставлена в дисковод. В этом случае, команде

FORMAT не нужны никакие параметры, и она сама определит как форматировать

дискету.

Стандартные действия команды FORMAT (для дискет):

1. Проверка загрузочного сектора DOS;

2. Проверка чтения( или сканирование) всего диска;

3. Перезапись загрузочного сектора, FAT и корневого каталога

4. Перезапись всего пространства диска.

Если на дискете уже есть какая-то информация, то действия команды

FORMAT будут другими.

Жесткие диски

При форматировании гибких дисков команда DOS FORMAT выполняет как

низкоуровневое, так и высокоуровневое форматирование, но для жестких дисков

эти операции надо выполнять отдельно. Более того, для жесткого диска

существует и третий этап, выполняемый между двумя указанными операциями

форматирования ,—разбиение диска на разделы. Создание разделов абсолютно

необходимо в том случае, если вы предполагаете использовать на одном

компьютере несколько операционных систем, или просто для удобства хранения

информации . Физическое форматирование всегда выполняется одинаково,

независимо от свойств операционной системы и параметров форматирования

высокого уровня (которые могут быть различными для разный ОС). Это

позволяет совмещать несколько операционных систем на одном жестком диске.

При организаций нескольких разделов на одном накопителе каждый из них может

использоваться для работы под управлением своей ОС или представлять для DOS

отдельный том (volume), или логический диск (logical drive). Том, или

логический диск, — это то, чему DOS присваивает буквенное обозначение.

Таким образом, форматирование жесткого диска выполняется в три этапа.

1. Форматирование низкого уровня.

2. Разбиение диска на разделы;

3. Форматирование высокого уровня.

В процессе форматирования низкого уровня дорожки диска разбиваются на

секторы. При этом записываются заголовки и заключения секторов (префиксы и

суффиксы), а так же формируются интервалы между секторами и дорожками.

Область данных каждого сектора заполняется фиктивными значениями или

специальными тестовыми наборами данных. В накопителях на гибких дисках

количество секторов на дорожке определяется типом дискеты и дисковода;

количество секторов на дорожке жесткого диска зависит от интерфейса

накопителя и контроллера.

Низкоуровневое форматирование предусматривает выполнение нескольких

этапов :

- сканирование диска;

- выбор коэффициента чередования;

- форматирование и нанесение (или повторное нанесение) меток заводских

дефектов;

- анализ поверхности.

Низкоуровневое форматирование обычно производится на заводе-

изготовителе жесткого диска, но иногда возникает необходимость

отформатировать «Винчестер» низкоуровневым форматированием. Одним из

поводов для такой операции может стать то, что при низкоуровневом

форматировании все данные, записанные на диске, уничтожаются. При этом

получается 100 % гарантия того, что никто и никогда не сможет их прочесть

или восстановить. Такая необходимость возникает, например, в том случае,

если вы собираетесь продать свой компьютер и не хотите, чтобы покупатель

получил доступ к вашей информации. Возможно, данные придется уничтожить для

того, чтобы ликвидировать разбиение диска, выполненное другой операционной

системой (не DOS), или если DOS-разбиение оказалось поврежденным.

Аналогичная ситуация возникает и при заражении компьютера некоторыми

вирусами. Однако чаще всего потребность в низкоуровневом форматировании

связана с проверкой качества поверхностей жестких дисков и обновлением

списков дефектов.

Разбиение диска на разделы.

Разбиение накопителя — это определение областей диска, которые

операционная система будет использовать в качестве отдельных разделов или

томов. С точки зрения DOS томом является участок диска, обозначенный какой-

либо буквой. Например, диск С — это том С, диск D — это том D и т.д.

Некоторые пользователи считают, что выполнять разбиение диска нужно только

для того, чтобы разбить его на несколько томов (более одного). Но это

неправильное представление; диск необходимо логически разбивать даже в том

случае» если он будет представлять собой единственный том С.

При разбиении диска в его первый сектор (цилиндр 0, головка 0, сектор

Соседние файлы в предмете Операционные системы