- •История информационных технологий основные определения в области применения информации:
- •Копирование и размножение документов.
- •Сохранение и передача информации в живой природе.
- •Информационные технологии на транспорте.
- •Язык, речь, письменность.
- •Книгопечатание.
- •Нотопечатание.
- •Традиционное средство связи.
- •Телеграф и телефон.
- •Современные средства и линии связи.
- •Проводные линиии связи.
- •Мобильная сотовая связь.
- •5. Лекция: История звукозаписи: версия для печати и pda
- •Механическая звукозапись
- •Магнитная звукозапись
- •Оптические диски
- •Память nor-флэш от Intel
- •6. Лекция: Запись изображений: версия для печати и pda
- •Фотография и кино
- •7. Лекция: История компьютера: версия для печати и pda
Память nor-флэш от Intel
Второй тип флэш-памяти был изобретён в 1989 году компанией Toshiba. Она построена по логической схеме NAND (в русской транскрипции Не-И). Новая память должна была стать менее дорогой и более скоростной альтернативой NOR-флэш. По сравнению с NOR, технология NAND обеспечила в десять раз большее число циклов записи, а также более высокую скорость как записи, так и удаления данных. Да и ячейки памяти NAND имеют в два раза меньший размер, чем у памяти NOR, что приводит к тому, что на определённой площади кристалла можно размещать больше ячеек памяти.
Название "флэш" (flash) было введено фирмой Toshiba, так как имеется возможность мгновенно стереть содержимое памяти (англ. "in a flash"). В отличие от магнитной, оптической и магнитооптической памяти она не требует применения дисководов с использованием сложной прецизионной механики и вообще не содержит ни одной подвижной детали. В этом состоит ее основное преимущество перед всеми остальными носителями информации и поэтому будущее - за ней. Но самым главным преимуществом такой памяти, конечно, является сохранение данных без подачи энергии, т.е. энергонезависимость.
Flash-память - это микросхема на кремниевом кристалле. Она построена на принципе сохранения электрического заряда в ячейках памяти транзистора в течение длительного времени с помощью так называемого "плавающего затвора" при отсутствии электрического питания. Ее полное название Flash Erase EEPROM (Electronically Erasable Programmable ROM) переводится как "быстро электрически стираемое программируемое постоянное запоминающее устройство". Ее элементарная ячейка, в которой хранится один бит информации, представляет собой не электрический конденсатор, а полевой транзистор со специально электрически изолированной областью – "плавающим затвором" (floating gate). Электрический заряд, помещенный в эту область, способен сохраняться в течение неограниченно долгого времени. При записи одного бита информации, элементарная ячейка заряжается, электрический заряд помещается на плавающий затвор. При стирании этот заряд снимется с затвора и ячейка разряжается. Flash-память – энергонезависимая память, позволяющая сохранять информацию при отсутствии электрического питания. Она не потребляет энергии при хранении информации.
6. Лекция: Запись изображений: версия для печати и pda
К записи изображений относятся фотография – получение неподвижных плоских изображений на бумаге, голография – получение объемных изображений, кино – съемка движущихся объектов на кинопленку и видеосъемка – магнитная и цифровая
Фотография и кино
Предшественником фотографии была камера-обскура - прибор, дающий возможность воспроизводить в уменьшенном виде находящиеся перед ним предметы и виды природы. Он представляет собой светонепроницаемый ящик с маленьким отверстием в центре одной из стенок. На его противоположной стенке получается обратное ("вверх ногами") изображение предметов, находящихся перед отверстием.
Словосочетание "camera obscura" в переводе с латыни означает "темная комната". Упоминания о камере-обскуре встречаются еще в V веке до н. э. - китайский философ Ми Ти описал возникновение изображения на стене затемненной комнаты. Упоминания о камере-обскуре были и у Аристотеля.
Вероятно, первым использовал камеру-обскуру для зарисовок с натуры Леонардо да Винчи. Он подробно описал ее в своем "Трактате о живописи". В 1686 году Йоганнес Цан спроектировал портативную камеру-обскуру. Она была оснащена зеркалом, расположенным под углом 45° и проецирующим изображение на матовую, горизонтальную пластину. В отверстие камеры-обскуры помещали линзу, что позволяло значительно увеличить яркость и резкость изображения. Многие художники (например, Ян Вермеер Дельфтский) использовали камеру-обскуру для зарисовки изображений - пейзажей, портретов, бытовых зарисовок. Если к матовому стеклу приложить полупрозрачную бумагу, то на ней можно с помощью карандаша довольно точно зафиксировать на просвет изображение на стенке. Для этого нужно аккуратно обвести контуры изображения на бумаге. Так поступал художник Каналетто, что позволило ему запечатлеть пейзажи Венеции с документальной точностью. Камера-обскура в дальнейшем послужила основой для получения фотографических снимков. Нужно было найти способ закрепить изображение на каком-нибудь материале, например на камне или бумаге, не используя карандаш, резец или кисть.
Первым, кому удалось это сделать, был француз Жозеф Ньепс (1765-1833). Рисовать он не умел и стремился заставить "рисовать" свет. Для этого он покрывал поверхность пластины из стекла, меди или сплава олова со свинцом тонким слоем асфальтового лака (битума), растворенного в животном масле. Это и был первый светочувствительный материал. Ньепс засвечивал его в камере-обскуре в течение нескольких часов. Когда полученное на покрытии изображение затвердевало и становилось видимым невооруженным глазом, Ньепс в темной комнате обрабатывал пластину кислотой. Она растворяла покрытие линий изображения, защищенное от воздействия света во время экспозиции (то есть времени выдержки при засветке). Затем гравер четко гравировал линии, покрывал пластину чернилами и отпечатывал необходимое количество экземпляров рисунка. В результате получалась гравюра, созданная не художником, а светом, - гелиография (в переводе с греческого - "нарисованная светом"). Первое стойкое изображение в камере-обскуре Ньепс получил в 1822 году. Экспозиция при этом была равна 8 часам.
Так Ньепс впервые в истории сумел избавиться от услуг художника и зафиксировать точное изображение объекта, "нарисованное" светом. Но при этом использовался ручной труд гравера. Такая гелиогравюра представляла собой лишь начальный этап в изобретении фотографии. Четкость изображения на гелиогравюрах была невелика.
Французский художник и изобретатель Луи Дагер (1787-1851) на основе опытов Ж. Ньепса разработал первый практически пригодный способ фотографии - дагерротипию (1839 г.).
Л. Дагер не изобрел фотографию - право первенства принадлежит Ж. Ньепсу, - но сделал ее действующей и популярной.
Его идея заключалась в том, чтобы получать изображение на полированной поверхности серебряной пластины, пропитанной парами йода: они делали ее чувствительной к свету. Эту пластину он помещал в камеру-обскуру и подвергал экспозиции, а проявлял парами ртути.
Он достиг результата в 1837 году после 11 лет опытов. Полученное и проявленное в парах ртути изображение он фиксировал, промывая экспонированную пластину раствором соли и горячей водой. Позднее соль была заменена другим фиксирующим веществом - гипосульфитом натрия. В результате смывались частицы йодистого серебра, не подвергшиеся воздействию света. Время экспозиции пластины в камере-обскуре составляло от 15 до 30 мин. (в то время как при гелиографии Ньепса требовалась экспозиция до 8 ч).
В результате получалась единственная фотография-позитив, названная автором дагерротипом. Несколько таких пластинок сделать было невозможно. Изображение на пластине получалось зеркальным. Рассматривать его можно было только при определенном освещении. Но Дагер сумел при получении изображений на дагерротипе, "нарисованных" светом, избавиться от услуг не только художника, но и гравера. Это и сделало его процесс доступным и практичным.
Дагер вызывал в Париже значительный интерес публики. С тяжелой фотографической камерой и громоздким оборудованием он делал свои дагерротипы на бульварах.
7 января 1839 года известный астроном и физик Араго доложил французской Академии наук о работах Дагера.
Вскоре ученые, художники и любители улучшили процесс Дагера. Они сократили время экспозиции до нескольких минут. Применение призмы дало возможность перевернуть изображение на дагерротипе из зеркального в нормальное. Дагерротипы передавали мельчайшие детали снимаемых объектов. К 1841 году была создана камера меньшего размера, а ее вес уменьшился в 10 раз.
Английский физик, химик Уильям Толбот (1800-1877) изобрел негативно-позитивный процесс в фотографии (калотипию).
Он пытался копировать виды природы с помощью камеры-обскуры. Но он тоже не обладал навыками рисования. Поэтому ему захотелось зафиксировать изображение, которое он видел в камере-обскуре. Толбот знал о том, что свет может воздействовать на свойства различных материалов, и он изобрел такой светочувствительный материал. Для этого он погружал лист бумаги в слабый раствор соли, а затем в раствор нитрата серебра. При этом в бумаге образовывался хлорид серебра и она становилась светочувствительной.
В 1835 году Толбот с помощью камеры делал снимки на своей светочувствительной бумаге, пропитанной хлористым серебром. Так он получил первый в мире негатив. К нему он прикладывал другой такой же лист бумаги и засвечивал их. Так Толбот сделал позитивный отпечаток. Первые снимки были темными, нечеткими и "пятнистыми", а чувствительность бумаги была очень низкой.
В январе 1839 года Толбот узнал о том, что в Академии наук в Париже Араго сделал сообщение об изобретении Л. Дагера - дагерротипе. Это побудило Толбота опубликовать сообщение о своем процессе. 31 января 1839 года он сделал в Лондонском королевском обществе доклад "Некоторые выводы об искусстве фотогеничного рисунка, или о процессе, с помощью которого предметы природы могут нарисовать сами себя без помощи карандаша художника".
Известный ученый Джон Гершель назвал изобретение Толбота фотографией и пустил в обращение слова "негатив" и "позитив".
В 1840 году У. Толбот изменил и улучшил свой процесс. Это позволило ему делать фотографии за несколько минут. Он назвал свой процесс калотипией (от греч.слов kalos - красивый и typos - отпечаток), впоследствии получившей название толботипия.
Проявлял он бумагу в кислоте, затем фиксировал изображение в растворе гипосульфита, промывал негатив в чистой воде, высушивал и натирал воском, делая его прозрачным. С помощью солнечного света он делал с негатива контактные отпечатки на хлоросеребряной бумаге.
Калотипия Толбота и дагерротипия Дагера имели принципиальные различия. В дагерротипе сразу получалось позитивное, зеркально отраженное изображение на серебряной пластине. Это упрощало процесс, но делало невозможным получение копий. В калотипии сначала изготовлялся негатив, с которого можно было сделать любое количество позитивных отпечатков. Поэтому калотипия намного ближе к современной фотографии, несмотря на то, что качество дагерротипии было намного выше, чем калотипии.
В 1844-1846 годах Толбот издал первый альбом "Карандаш природы" с фотографическими художественными иллюстрациями - видами природы и архитектуры, а в 1851 году разработал метод мгновенной фотографии.
В том же 1851 году английский изобретатель Ф. Скотт Арчер стал применять "мокрый" фотографический процесс. Листы стекла поливали смесью солей серебра с раствором нитроцеллюлозы в спирте (коллодием). Эти мокрые пластины экспонировали и проявляли без высушивания. Поэтому на съемку фотограф нес с собой целую походную фотолабораторию: громоздкий фотоаппарат, запас пластинок, химикалии, посуду и палатку для работы с ними в темноте. Это было крайне сложно и неудобно.
В 1871 году английский изобретатель Р.Л. Меддокс создал пластинку с сухим бромосеребряным желатиновым слоем, а в 1873 году немецкий ученый Г. Фогель сделал открытие, позволившее увеличить чувствительность фотоматериалов и значительно уменьшить время экспозиции. В 1887 году американец Г. Гудвин изобрел фотопленку на гибкой нитроцеллюлозной подложке.
В 1880 году американский изобретатель Джордж Истмен (1854-1932) разработал процесс изготовления сухих фотографических пластин, использование которых существенно упростило работу фотографа, и в том же 1880 г. основал фирму Eastman Dry Plate and Film Company для их производства, преобразованную в 1892 в Eastman Kodak Company.
В самом конце ХIХ - начале ХХ века Д. Истмен создал модель портативного фотоаппарата и открыл пункты по обработке фотопленки и печати фотографий по всему миру. Девизом его фирмы Коdак стало изречение: "Нажмите кнопку, мы сделаем остальное!"
Первый фотоаппарат "Кодак", появившийся в 1888 году, был простой портативной камерой, вмещавшей ролик бумаги на 100 снимков. Камера с отснятыми снимками возвращалась производителю для проявления, печати и перезарядки. В 1889 году Истмен разработал прозрачную пленку. В 1900 году он создал более простую фотокамеру, которой могли пользоваться даже дети. Стоила она всего 1 доллар и продавалась вместе с роликом пленки в кассете, которую после фотографирования можно было отправить на завод-изготовитель для проявки и печати. Такими камерами пользовались миллионы любителей фотографии.
В последующие годы фирма Eastman Kodak внедрила еще целый ряд новшеств. Она была первой компанией, создавшей оборудование для домашней киносъемки и цветную пленку для слайдов (диапозитивов). В 1960 году фирма разработала кинопленку в кассетах, а в 1982 году - фотокамеры с автоматическим использованием фотовспышки в случае необходимости, с автоматической наводкой на резкость и автоматической перемоткой пленки после съемки каждого кадра. С их появлением девиз Д. Истмена "Нажмите кнопку, мы сделаем остальное!" приобрел буквальный смысл для миллионов даже самых неопытных фотолюбителей. Пункты фирмы Kodak по проявке фотопленок и печати фотографий с них существуют во многих странах мира, в том числе и в России.
Немецкий механик и изобретатель Оскар Барнак (1879-1936) создал в 1911-13 годах первую миниатюрную фотокамеру "Лейка" (Leica 1A), которая появилась в продаже в 1924 году.
Успех этой камеры привел к широкому распространению 35-мм камер во всем мире. О. Барнак установил стандарт кадра 24х36 мм для всех миниатюрных фотокамер, существующий и в наши дни.
Современные фотоаппараты полностью автоматизированы, снабжены встроенной фотовспышкой, сами производят наводку на резкость снимаемого объекта, определяют выдержку в зависимости от условий освещения, при необходимости включают фотовспышку, автоматически перематывают пленку на следующий кадр. Цветная фотопленка имеет очень высокую чувствительность, позволяющую снимать практически при любых условиях. Она теперь выпускается всего четырех градаций чувствительности 100, 200, 400 и 800 единиц, в кассетах на 12,24 и 36 кадров. Фотолюбителю нужно только выбрать объект съемки и вовремя нажать на спусковую кнопку. Особенной популярностью пользуются у фотолюбителей миниатюрные фотоаппараты, шутливо называемые "мыльницами". Процессы проявления фотопленки и фотопечати на высококачественной цветной фотобумаге давно автоматизированы в многочисленных фотолабораториях всемирно известных фирм "Кодак" и "Фуджи". Поэтому домашние фотолаборатории почти исчезли в наши дни. Пластмассовые светонепроницаемые кассеты с фотопленкой вставляются в фотоаппараты и вынимаются из них с уже отснятой фотопленкой на свету (разумеется, после обратной перемотки в закрытом фотоаппарате). Поэтому фотолюбитель уже не нуждается в затемненном помещении для зарядки пленки в кассету.
Теперь у фотолюбителя только одна забота - правильно выбрать кадр для съемки и вовремя нажать на спусковую кнопку. Все остальное сделает за него современный фотоаппарат - автоматически наведет на резкость, в зависимости от условий освещения выберет диафрагму и выдержку, применит, если нужно, фотовспышку, произведет экспозицию и даже перемотает пленку на следующий кадр после окончания съемки предыдущего. Когда же вся пленка кончится, аппарат автоматически перемотает всю экспонированную пленку обратно в кассету. Фотолюбителю остается только достать отснятую кассету и отнести ее в фотолабораторию для проявки и печати на автоматическом оборудовании. Поэтому качество любительской фотосъемки резко возросло. Когда в такой автоматизированный фотоаппарат вставляют новую кассету с неэкспонированной пленкой, то он автоматически перематывает ее на первый кадр и сам определяет чувствительность этой пленки. После этого аппарат снова готов к работе. Наиболее соверш енные модели снабжены календарем и автоматически экспонируют на каждый кадр дату съемки.
В 1960-1980-е годы широкое распространение получила фотосъемка на диапозитивную цветную пленку (так называемые слайды). Их нужно рассматривать на просвет с помощью диапроектора. Слайды дают высокое качество изображения, но после появления за последние десятилетия высококачественной позитивной фотографии их популярность значительно снизилась.
Изобретатель и предприниматель Э. Лэнд разработал в 1947 году диффузионный фотографический процесс, при котором химико-фотографическая обработка негативного фотоматериала и получение позитива происходят одновременно. Другими словами, он изобрел одноступенчатый процесс проявления и печати в фотографии. На его основе он создал фотоаппарат моментальной фотографии, названный им Polaroid. Такое же название он дал и своей фирме. Проявление и фиксирование изображения происходит внутри разработанного им фотоаппарата. Для этого в аппарат Polaroid вставляется специальный картридж - фильмпакет, рассчитанный на получение 10 фотоснимков размером 8,8х10,7 см, с сухими химикалиями. Главное достоинство этого аппарата - оперативность съемки. Сразу же после нажатия на спусковую кнопку из аппарата появляется белый картонный квадрат, на котором в течение одной минуты проявляется готовое позитивное цветное фотоизображение. Но на этом достоинства кончаются: качество снимка значительно хуже, чем у современного обычного фотоаппарата, снимок - всего в одном экземпляре, размножить или увеличить его нельзя.
Лэнд Эдвин (1909-1991) - американский ученый и изобретатель, автор более 500 патентов. В 1932 году разработал поляризационный фильтр, названный им Polaroid, на основе субмикроскопических кристаллов, внедренных в пластик.
В 1937 году основал корпорацию Polaroid Corp. в Кэмбридже (штат Массачусетс). В 1941 году разработал объемный кинопроцесс на основе поляризации света.
В 1947 году он продемонстрировал фотоаппарат, названный им Polaroid Land Camera, который печатал готовую фотографию через 60 секунд после съемки. Сначала был применен процесс, основанный на жидких химических реактивах ("мокрый" процесс), а позднее были использованы сухие реактивы - процесс стал "сухим". Первые фотографии Поляроида были черно-белыми, затем были получены цветные фотографии. Камера "Поляроид" благодаря простоте и быстроте получения готовых цветных фотографий стала одной из самых популярных в мире.
Итак, фотографический процесс получения изображений на поверхности стеклянной пластинки, пленки или бумаги, покрытой светочувствительным слоем солей серебра, основан на химическом действии света, вызывающем разложение этих солей. Изображение фотографируемого объекта в фотоаппарате с помощью объектива проецируется на светочувствительную поверхность пластинки или пленки, которая затем проявляется и фиксируется. На ней получается негативное изображение объекта. С этого негатива на светочувствительной фотобумаге печатаются фотографии.
После изобретения фотографии стало возможным получить движущиеся изображения. Для этого сначала фотографируют на кинопленку последовательные положения движущегося предмета, а затем также последовательно показывают эти кадры с помощью проектора. При перемещении пленки от одного кадра к следующему световой поток перекрывается скачковым механизмом (или обтюратором). Благодаря этому зритель видит только последовательный ряд размещенных на пленке неподвижных кадров. Если снимать, а потом показывать пленку со скоростью 16, а лучше 24 кадра в секунду, то зрители за счет инерционности зрения не замечают смену кадров и движение на экране кажется непрерывным.
Первым, кто создал оптический прибор для демонстрации движущихся картинок, был Томас А. Эдисон. Патент на свой прибор - кинетоскоп - он получил в 1891 году.
Кинетоскоп (от греческого кинетос - движущийся и скопио - смотреть) Эдисона представлял собой ящик с глазком-окуляром, с помощью которого смотреть фильм мог только один человек. Внутри ящика через систему роликов протягивалась пленка с фильмом длительностью около полминуты. Таким образом, кинетоскоп был прибором индивидуального пользования. В 1894 году Эдисон открыл зал "Кинетоскоп Парлор". В нем он установил 10 ящиков-кинетоскопов для демонстрации фильмов. Один сеанс стоил 25 центов. Однако смотреть фильм через глазок-окуляр было неудобно.
В 1895 году свой первый кинофильм в парижском кафе показали братья Люмьер. Демонстрировали они его с помощью кинопроектора, проецировавшего изображение на большом экране. Это дало возможность показывать фильм сразу многим зрителям. В результате кинетоскопы Эдисона для индивидуального просмотра фильмов не выдержали конкуренции и уступили место кинопроекторам.
Братья Огюст (1862-1954) и Луи (1864-1948) Люмьер - изобретатели кинематографа и постановщики первых в мире кинофильмов.
Отец их был художником, увлекавшимся фотографией. Собственно изобретателем кинематографа был Луи, но Огюст помогал брату и принимал активное участие в киносъемках.
Первый киносеанс братья Люмьер провели в парижском Гран-кафе на бульваре Капуцинов в 1895 году. За 1895-1896 годы они сняли около 50 короткометражных фильмов. Им принадлежит и само название "кинематограф". Снимали они документальные картины (например, знаменитое "Прибытие поезда на вокзал"), комедии ("Политый поливальщик"), и игровые картины. Киносеансы шли под аккомпанемент пианино или саксофона. Последний свой фильм братья Люмьер сняли в 1898 году, а всего ими было снято около 1800 кинолент.
Их изобретение быстро распространилось сначала в Европе, а затем и в Америке.
Братья Люмьер подарили миру не только кинематограф. Другой важной областью их исследовательской работы была фотография: сначала черно-белая, а затем и цветная. Работая многие годы, они разработали рецепт автохрома - пластинок для цветной фотографии. На стеклянную пластинку они наносили мелко размельченный крахмал, синий, красный и зеленый краситель, сажу, клей, фотоэмульсию, смешивали и высушивали их. Братья Люмьер разработали технологию и организовали промышленное производство пластинок автохрома. Фотолюбители получили стеклянные пластинки с позитивным изображением и яркими цветами. С них можно было напечатать фотографию или рассматривать снимки под лупой, их можно было вставить в диапроектор или сохранить в фотоальбоме.
Доступная цена, высокая по меркам начала века скорость съемки и натуральность получаемых снимков обеспечили коммерческий успех изобретению Люмьеров. Пластинки автохрома производили с 1907 до 1932 года.
До нашего времени сохранилось несколько десятков тысяч цветных фотографий, сделанных на пластинках автохрома в 50 странах мира.
В течение почти 30 лет кино оставалось немым, а затем стало звуковым. Для этого на кинопленке стали оптическим способом записывать звуковую дорожку, а при показе кинофильма считывать с нее звук с помощью фотоэлемента.
Первую оптическую систему записи звука в кино создал американский изобретатель Ли де Форест (1873-1961).
Непрозрачная область кинопленки, смежная с изображением, содержит фотографическую фонограмму в виде звуковой дорожки, ширина которой изменяется в соответствии с изменениями звука. По мере воспроизведения копии через кинопроекционную установку, световой луч лампы кинопроектора, проходя через фонограмму, передает изменения на фотоэлемент, преобразующий световой сигнал в электрический. Этот сигнал усиливается, обрабатывается с помощью фильтров и преобразовывается как звуковой. Оптический звук имеет ряд преимуществ, которые определили его универсальность. Прежде всего - экономичность при производстве, так как оптическая фонограмма печатается на пленке вместе с изображением. Срок жизни звуковой дорожки такой же, как и изображения, и может быть достаточно долгим. Оптическая считывающая головка, установленная в проекторе, - наиболее эффективная и простая в обслуживании технология из ныне существующих.
Впервые звук и изображение стали записывать на кинопленке, созданной Д. Истменом в конце XIX - начале XX века. Первый звуковой кинофильм "Звуки джаза" были выпущен в США в 1927 году. В нашей стране первый художественный звуковой фильм "Путевка в жизнь" был выпущен в 1931 году.
Фотографии и кинопленка многие годы были черно-белыми, а затем стали цветными, хотя первое цветное изображение француз Л. Дюко дю Орон получил еще в 1868-1869 годах.
Стандартный размер кадра 36-миллиметровой фото- и кинопленки составляет 24х36 миллиметров. По обеим сторонам кадра в ней имеются отверстия для ее протяжки при съемке и проекции на экран. Такая кинопленка используется в профессиональном кино. Для кинопередвижек применялась 16-миллиметровая кинопленка, а для любительского кино в 1960-1990-е годы широко использовалась 8-миллиметровая черно-белая и цветная кинопленка, в которой отверстия располагались с одной стороны. В последние годы с появлением любительских видеокамер любительская киносъемка после 30-40-летнего существования полностью "вымерла": наступил век магнитной видеосъемки.
Однако профессиональное кино продолжает жить и сегодня. Большой прогресс достигнут за последние десятилетия в звуковом сопровождении кинофильмов. Сегодня каждый зритель, в каком бы месте зала он не находился, смотрит кинофильм с пространственным звуком и специальными эффектами, например, раскатами грома.
Долби (Dolby) - это технология записи и воспроизведения многоканального звука, создающего "эффект присутствия". Основа этой технологии - принцип размещения звука на двух дорожках в пространстве, выделенном для записи стандартной оптической звуковой дорожки. Дорожки несут информацию не только для левого и правого каналов (внутренний стереозвук), но также и информацию для третьего (центрального) канала и, что наиболее важно, - для четвертого канала (surround) объемного звучания окружающего звука и специальных эффектов в зале.
Dolby Digital - это новейшая разработка в технологии кинозвука - шестиканальная цифровая оптическая запись дополнительно к четырехканальной аналоговой SR (surround) записи, размещенная на одной копии 35 mm. Цифровая дорожка расположена при этом справа на копии. Формат Dolby Digital доказал свои высокие качества, надежность и практичность в кинотеатрах всего мира.
Магнитная видеозапись
Изобретение съемочной видеокамеры и видеомагнитофона позволило записывать на магнитную пленку не только звук, но и движущееся изображение.
Однако при записи вдоль магнитной ленты потребовалась бы очень высокая скорость ее движения - более 200 км/ч (приблизительно в 10000 раз большая, чем при записи звука). Дело в том, что человек слышит звуки в диапазоне частот от 20 до 20000 Гц. Качественная запись звука осуществляется в этом диапазоне. Для записи видеоизображения требуются гораздо более высокие частоты - свыше 6 МГц.
В 1951 г. В. Сэлстед, А. Понятов и М. Столяров (США) разработали конструкцию видеомагнитофона с вращающимися магнитными головками.
Идею применить вращающиеся головки подал Чарльз П. Гинзбург (1920-1992), который приступил к работе в компании А. Понятова Ampex в 1952-м. Приборы видеозаписи того времени работали на излишне высокой скорости - 6 м/с, поэтому расход видеопленки был очень большой.
В своем устройстве Ampex VRX-1000 Гинзбург применил записывающие головки, которые вращались на высокой скорости, что позволило значительно снизить скорость лентопротяжного механизма. Изобретение Гинзбурга предопределило будущее аналоговых аудио- и видеомагнитофонов.
Вместо того чтобы увеличивать скорость движения магнитной ленты при записи и воспроизведении изображения, магнитные головки в видеокамере и видеомагнитофоне закреплены на вращающемся с высокой скоростью барабане, а сигналы записываются не вдоль, а поперек ленты. Ось вращения барабана наклонена к ленте, а его магнитная головка при каждом обороте записывает на ленте наклонную строчку. При этом плотность записи значительно увеличивается, а магнитная лента должна двигаться сравнительно медленно - со скоростью всего 2 мм/с.
До изобретения магнитной видеозаписи все телевизионные передачи велись только в "прямом эфире". Это создавало целый ряд неудобств - ведь все ошибки сразу были видны зрителям. Видеозапись сразу дала возможность осуществлять видеомонтаж телевизионных программ, хранить их и передавать в любое удобное время. В наши дни съемочная видеокамера и видеомагнитофон стали не только непременным атрибутом телевизионных студий, но широко вошли в быт.
Любительские кинокамеры были практически вытеснены любительскими съемочными видеокинокамерами. Они записывают цветное изображение и звук (с помощью встроенного микрофона), обладают высочайшей чувствительностью. Измерение яркости изображения, установка диафрагмы и наводка на резкость полностью автоматизированы. Результат видеосъемки можно просмотреть сразу же, ведь никакой проявки пленки (как при киносъемке) уже не требуется.
В современных видеокамерах оптическое изображение преобразуется в электрическое с помощью полупроводниковой матрицы из светочувствительных элементов ПЗС (CCD). В них не используется кинопленка, не требуется проявление и закрепление. Изображение в них записывается на магнитную видеопленку.
Видеокамеры снабжаются высококачественными объективами. Так, наиболее современные цифровые камеры фирмы Sony формата DV оснащены объективами фирмы Carl Zeiss. В дорогих видеокамерах используются вариообъективы с переменным фокусным расстоянием (так называемые трансфокаторы или ZOOM-объективы), обеспечивающие оптическое 10-кратное увеличение. Это означает, что при видеосъемке можно не сходя с места приблизить или отдалить снимаемый объект, причем это можно делать постепенно. Кроме того, применяется и цифровое увеличение до 400 и более раз, при котором фрагмент изображения растягивается на весь экран.
Применяется также система стабилизации изображения, которая корректирует дрожание камеры - с большой точностью и в широких пределах.
Первоначально в студийных передающих видеокамерах использовали в качестве преобразователя света в электрический сигнал (датчика изображения) видикон. Это вакуумный электронно-лучевой прибор, в котором фоточувствительная мишень служит для построчного считывания изображения.
Видеокамеры при этом имели большие габариты и высокую инерционность, плохую чувствительность, большую потребляемую мощность и короткий срок службы. Поэтому в современных ручных видеокамерах вместо видикона, так же как и в цифровых фотоаппаратах, применяют ПЗС-матрицы. Именно применение ПЗС-матриц обеспечивает им высочайшую чувствительность, дающую возможность снимать почти в полной темноте - при свете костра или свечи.
В видеофильме, как и в звуковом кинофильме, движущееся изображение и звук записываются на один и тот же носитель информации - магнитную видеопленку. Наиболее распространенный бытовой стандарт видеозаписи - VHS (Video Home System - домашнее видео). Ширина магнитной пленки в этом стандарте - 12,5 мм. Для портативных видеокамер применяется уменьшенная кассета с пленкой той же ширины - VHS Compact. Для воспроизведения в видеомагнитофоне ее помещают в специальный адаптер, имеющий внешние размеры стандартной видеокассеты VHS. Выпускаются видеокассеты VHS с временем записи 120, 180, 195 и 240 минут. Запись на эти кассеты (в отличие от звуковых или аудиокассет) - односторонняя.
Бытовая видеоаппаратура VHS была разработана в 1976 году японской фирмой JVC (Japan Victor Company). Руководил разработкой Сидзуо Такано. Еще в 1974 году японская компания Sony создала бытовую видеоаппаратуру, однако ее система Betamax обеспечивала время записи всего 60 мин., этого было недостаточно для продолжительной записи кинофильмов и спортивных соревнований. Группе С. Такано удалось достичь времени записи сначала 120 мин., а затем 180 и 240 мин. Благодаря этому фирме JVC удалось победить компанию Sony в жесткой конкурентной борьбе. Ее поддержали крупнейшие японские компании Matsushita, Hitachi и Sharp. В результате VHS стала мировым стандартом в бытовой видеоаппаратуре. Все современные видеомагнитофоны рассчитаны на использование видеокассет VHS. Таких видеомагнитофонов в мире выпущено более 750 миллионов.
Современные видеомагнитофоны кроме основной скорости записи (SP) и воспроизведения имеют уменьшенную вдвое скорость - Long Play (LP). Это позволяет удвоить время записи и воспроизведения стандартной кассеты (правда, с небольшой потерей качества записи). Так, например, время записи наиболее распространенной кассеты на 180 минут при этом увеличивается до 360.
Фирма Sony разработала и выпускает миниатюрные видеокассеты стандарта Video-8 (Hi8). Ширина пленки в них - 8 мм. Это позволило уменьшить габариты портативных бытовых видеокамер. Наиболее совершенные из них, для контроля изображения во время видеосъемки, кроме видоискателя снабжены миниатюрным цветным дисплеем на жидких кристаллах. С их помощью можно просмотреть только что отснятый видеофильм прямо на съемочной видеокамере. Другой способ просмотра - на экране телевизора. Для этого выход видеокамеры соединяют с входом телевизора. Однако вставить миниатюрную видеокассету стандарта Video-8 в видеомагнитофон нельзя. Предварительно ее нужно переписать на обычную видеокассету стандарта VHS. При перезаписи видеокассет происходит потеря качества - значительно большая, чем у аудиокассет. Ведь на кассеты VHS и Hi8 видеозапись осуществляется по аналоговому методу.
Переход на цифровой метод записи, осуществленный в наиболее современных видеокамерах, позволяет избежать потери качества даже при многократной перезаписи.
В 1995 году консорциум 55 ведущих производителей электроники, в том числе Sony, Philips, Hitachi, Panasonic и JVC, приняли цифровой формат видеозаписи на магнитную пленку DVC (Digital Video Cassette) ил DV (Digital Video). Уже в конце 1995 года Sony представила первую DV-видеокамеру. Теперь цифровой видеофильм можно перенести с видеокамеры на винчестер компьютера и обратно непосредственно, без всяких сложных преобразований.
DV представляет собой формат записи на магнитную ленту шириной 6,35 мм со скоростью передвижения 18,831 мм/с. Ширина ленты и скорость значительно меньше, чем в аналоговом стандарте VHS, поэтому кассета mini-DV имеет размеры всего 66х48х12,2 мм и рассчитана на время записи 60 мин, а время записи стандартной кассеты DV с габаритами 125х78х14,6 мм может составлять 120, 180 и даже 240 мин. Была предложена еще и DV-кассета с микросхемой памяти для хранения списка записанных видеосюжетов (в том числе временные коды начала и конца каждого видеофрагмента, монтажные метки и номера сцен и дублей).
Каждому кадру на магнитной ленте соответствуют 12 наклонных строк-дорожек шириной 10 мкм. На каждой из них, кроме записи аудио- и видеоинформации, часа, минуты, секунды и порядкового номера кадра, есть возможность записать дополнительную информацию о видеосъемке. Все DV-камеры могут работать в режиме фотосъемки и фиксировать отдельные изображения со звуковым сопровождением в течение 6-7 с. При этом они превращаются в цифровые фотоаппараты с емкостью 500-600 кадров. Создан уже и DV-видеомагнитофон Sony DHR-1000.
Наряду с цифровым форматом DV фирма Sony разработала новую цифровую технологию Digital 8, которая призвана стереть границу между аналоговыми и цифровыми форматами. Она позволяет использовать цифровую запись DV на обычной кассете Hi8, применявшейся для аналоговой записи. Кассета Hi8 значительно дешевле цифровой кассеты DV, однако несколько больше ее по габаритам.
Цифровая запись на кассеты Hi8 осуществлена с помощью новых видеокамер Digital 8. Эти камеры можно подсоединять к компьютеру или другому DV-устройству, что дает возможность перезаписывать без потери качества и обеспечивает удобство монтажа записей. Кроме того, с помощью видеокамер Digital 8 можно перевести ранее сделанные аналоговые записи в цифровую форму и даже воспроизводить смешанную запись - и аналоговую, и цифровую. Более широкая лента Hi8 дает возможность записывать ту же информацию, что и в формате DV, но при этом информация о каждом кадре записывается на вдвое меньшем числе дорожек (6 вместо 12). Однако скорость движения ленты при этом увеличена в полтора раза, поэтому на 2-часовую кассету Hi8 помещается только 1 ч 40 мин цифровой записи.
Фирма Hitachi выпустила первую любительскую цифровую видеокамеру без видеокассеты. Изображение в ней записывалось на жесткий съемный диск (так называемый "винчестер") емкостью 260 Мбайт. Его хватало на 20 минут видеозаписи. Записанный в цифровом формате видеофильм можно просмотреть на персональном компьютере или преобразовать его в аналоговый сигнал и посмотреть по телевизору. Но эту же камеру можно использовать и в качестве цифрового фотоаппарата. Тогда этого объема памяти хватает на 3000 цветных фотоснимков или на 1000 цветных снимков с закадровым звуковым комментарием. Запись ведется со сжатием информации в формате MPEG/JPEG, стандартном для компьютеров, поэтому ее можно просматривать и даже редактировать на мониторе персонального компьютера. Главная особенность этой камеры - возможность комбинировать видеофрагменты и фотографии.
В любой современной видеокамере есть фоторежим, дающий возможность записывать стоп-кадры на видеоленту, а в самых новых - на флэш-карту. В новейших цифровых фотоаппаратах появился режим видеосъемки коротких видеофрагментов. Но обычно качество фотографий в видеокамерах и сделанного фотоаппаратом видео - невысокое.
Фирма Panasonic выпустила камеру-"трансформер", способную превращаться в фотоаппарат или видеокамеру. Она состоит из общего оптического модуля, включающего в себя объектив с преобразователем, жидкокристаллический дисплей и видоискатель, и два отдельных функциональных блока: фотоблок со встроенной вспышкой и видеоблок с лентопротяжным механизмом и батареей питания. В оптическом модуле применяется ПЗС-матрица на 1,08 млн пикселей, обеспечивающая высокое качество как фотографий, так и видеосъемки.
До недавнего времени самой компактной кассетой была miniDV. Но ей на смену приходит новый формат MICRO MV Sony. Эта фирма впервые использовала в бытовых видеокамерах более эффективный метод сжатия информации. Благодаря этому размер новой видеокассеты втрое меньше, чем у miniDV.
Особенностью этих миникамер является возможность записи изображения на карты флэш-памяти Memory Stick.
При этом на карту Memory Stick емкостью 8 Мбайт входит 5 минут видеозаписи, а на 128-мегабайтную - 82 минуты видеозаписи.
В наиболее совершенных видеокамерах вместо магнитной ленты для записи видеоизображения применены перезаписываемые оптические DVD-RW диски. Записанный на них диск можно сразу же вставить в DVD-плейер для просмотра. Благодаря малому диаметру диска (8 см) габариты видеокамеры такие же, как и у обычных, с использованием кассет с магнитной пленкой. Время записи на DVD-диске составляет 30 мин., а в режиме "экономии" - 60 мин, с некоторым понижением качества видеоизображения. На таком диске объемом 4,7 Гбайта помещается до 2000 фотографий высокого качества. DVD-технология обеспечивает мгновенный доступ к любому кадру, в отличие от "пленочных" камер, в которых для просмотра нужного кадра магнитную пленку нужно предварительно перемотать. С помощью специальных программ DVD-видеокамеры обеспечивают удобный компьютерный монтаж видеофильмов. Снимать рекомендуется на перезаписываемый диск DVD-RW, несмотря на его более высокую цену, а хранить записи - на обычных записываемых дисках DVD-R.
Все перечисленные модели видеокамер содержат сложные механизмы лентопротяжки или привода DVD-дисков.
Наиболее революционной моделью в настоящее время является сверхминиатюрная видеокамера Panasonic SV-AV100E, вообще не содержащая механических подвижных узлов. Запись видео и фотоснимков в ней осуществляется на карту флэш-памяти SD. Форматы записи - MPEG-2 или MPEG-4. В режиме максимального разрешения MPEG-2 (705х576 точек) картинка сопоставима по качеству с записью на DVD-диск. Камера оснащена ЖК-дисплеем с диагональю 2,5 дюйма. Карта флэш-памяти SD объемом 512 Мбайт обеспечивает время видеосъемки 10 мин с максимальным разрешением. При съемке в формате MPEG-4 с заметно пониженным разрешением этой карты хватает на 10 ч записи. Габариты видеокамеры - всего 33х90х65 мм, а вес - 156 г.
Именно таким цифровым видеокамерам, фотокамерам, диктофонам без подвижных узлов и деталей принадлежит будущее. Они более надежны, долговечны, легки и миниатюрны, не боятся встрясок при ходьбе, ударов.
Для того чтобы сделать снимок, нужно получить оптическое изображение и уметь его закрепить. За первый процесс "отвечает" физика, а за второй - химия. Но это касается традиционного фотографического процесса.
В новейшей так называемой цифровой фотографии закрепить оптическое изображение также позволяет физика, а не химия. Для этого оно превращается в электрический сигнал. Вместо традиционной фотопленки в ней используются современные носители информации - матрицы, которые состоят из множества микроскопических элементов - пикселей. Это так называемые приборы с зарядовой связью (ПЗС).
В 1975 году инженер Стив Сассон, работавший в компании Kodak, сделал первую работающую камеру на ПЗС-матрице производства Fairchild. Камера весила почти три килограмма и позволяла записывать снимки размером 100x100 пикселей на магнитную кассету (один кадр записывался 23 секунды). В 1981 году Sony выпускает камеру Mavica (сокращение от Magnetic Video Camera), с которой и принято отсчитывать историю современной цифровой фотографии. Mavica имела разрешение 570x490 пикселей (0,28 Мп). Устройством цифровой памяти в нем служила широко распространенная дискета. Но объем ее памяти составлял всего 1,44 Мб. Поэтому все дальнейшие цифровые фотокамеры используют в качестве устройства цифровой памяти карточки флэш-памяти. Это позволило не только значительно увеличить память, но и значительно уменьшить габариты цифровых фотокамер.
Принцип работы цифровой фотокамеры заключается в том, что ее оптическая система (объектив) проецирует и фокусирует уменьшенное изображение фотографируемого объекта на миниатюрную полупроводниковую матрицу из светочувствительных элементов ПЗС (CCD). ПЗС-матрица - это аналоговое устройство: электрический ток возникает в каждом пикселе изображения в прямом соотношении с интенсивностью падающего света. Чем выше плотность пикселей в ПЗС-матрице, тем более высокое разрешение будет давать фотокамера. Далее полученный аналоговый сигнал с помощью цифрового процессора преобразуется в оцифрованное изображение, которое сжимается в формат JPEG (или аналогичный ему) и затем записывается в память камеры. Емкостью этой памяти определяется количество снимков. В качестве памяти цифровых фотокамер используются различные накопители - дискеты, карточки флэш-памяти, оптические диски CD-RW и др.
А дальше эти запомненные электрические сигналы в виде картинки можно вывести на экран компьютера, телевизора, напечатать на бумаге с помощью принтера или передать по электронной почте в любую страну. Чем больше пикселей содержит ПЗС-матрица, тем больше четкость цифрового фотоизображения. В матрицах современных цифровых фотоаппаратов число пикселей доходит до 3-4 и даже 7 миллионов (мегапикселей).
Цифровой фотоаппарат снабжен дисплеем, на котором сделанный снимок появляется сразу же после нажатия кнопки . Никакого проявления и закрепления изображения при этом не требуется. Если снимок не понравился, его можно "стереть" и на его место поместить новый. Единственное, что в цифровом фотоаппарате осталось от традиционной фотографии, - это объектив и камера-обскура, в которой помещается светочувствительная ПЗС-матрица.
В цифровой фотографии полностью исключается использование светочувствительных материалов с солями дефицитного серебра, существующих уже более 100 лет!
Еще одно преимущество цифровых фотокамер - это возможность делать не только фотографии, но и снимать короткие видеосюжеты длительностью несколько минут, причем со звуком. Для этого большая часть цифровых фотокамер снабжается встроенным микрофоном.
Качество "цифровых" снимков быстро догоняет качество обычных. Можно смело предположить, что в ближайшие годы цифровая фотография полностью вытеснит традиционную.
Такие носители информации, как бумага, перфолента и перфокарта, грампластинка, магнитная пленка, фотографическая бумага и кинопленка, были самыми распространенными в середине XX века.
Цифровое кино
За последние годы бурно развивается цифровое кино. Цифровой кинематограф - это процесс производства, распространения и демонстрации кинофильма в кинотеатре на основе цифровых технологий без применения традиционной кинопленки. Съемка цифровых кинофильмов ведется с помощью высококачественных цифровых видеокамер, а демонстрация - с помощью цифровых видеопроекторов, полностью заменяющих съемочные кинокамеры и кинопроекторы. Цифровые жидкокристаллические видеопроекторы применяются и в домашних кинотеатрах.
С момента появления около 30 лет назад первого видеомагнитофона замена традиционной 35-мм кинопленки на систему электронной цифровой проекции стала лишь вопросом времени. Системы цифровой проекции кинофильмов уже появились в кинотеатрах, качество цифровой проекции сравнялось с качеством традиционного пленочного, а во многих случаях даже превзошло качество обыкновенной тиражной копии кинофильма. Для киностудий - цифровое кино обеспечивает одинаково высокое качество изображения и звука кинофильма как в студии, так и в кинотеатре. Зрители видят фильм именно так, как это задумал режиссер. Именно благодаря этим возможностям цифрового кино многие ведущие кинорежиссеры, такие как Джордж Лукас, активно пропагандируют цифровые технологии. Есть у цифрового кино и противники среди кинорежиссеров, которые заявляют, что никогда не откажутся от использования кинопленки. Это напоминает время перехода от немого кино к звуковому, когда даже Чарли Чаплин не хотел переходить к использованию звука, но затем все-таки начал снимать звуковые фильмы.
Внедрение цифрового кинематографа позволяет только за счет тиражирования фильмов сэкономить более 1 млрд долларов для мировой киноиндустрии. Технология цифрового кино значительно увеличивает защиту кинофильма от пиратства - можно применять для защиты методы шифрования, используемые в банковской сфере и системах национальной безопасности. Цифровой кинематограф позволяет организовывать доставку фильма в любой уголок планеты с помощью спутниковых систем, тем самым обеспечивая одновременно сотни и тысячи кинотеатров мира премьерными кинофильмами.
Для владельцев кинотеатров цифровые системы позволяют наряду с традиционными фильмами демонстрировать на большом киноэкране:
спортивные программы (футбол, хоккей, "Формула-1", бокс и др.);
концерты (грандиозные шоу, рок-фестивали, мюзиклы, оперы и т.д.);
прямые трансляции важных событий (чемпионаты мира, извержения вулканов, партийные съезды и т.д.).
В нашей стране благодаря системам цифрового кинематографа становится возможно "доставить" любой фильм, любую программу в самый отдаленный кинотеатр, будь он на Дальнем Востоке или на Крайнем Севере.
Для кинозрителей - цифровое кино обеспечивает одинаково высокое качество демонстрации фильмов как в день премьеры, так и после сотен просмотров. Ведь у цифрового изображения не бывает царапин и грязи, потери кадров при обрыве пленки, дрожания картинки и выцветания цветов.
Голография
Стереоскопическая съемка за счет получения одновременно двух изображений на фото- или кинопленке (отдельно для правого и левого глаза) позволила создать у зрителя ощущение объемности изображения. Однако стереоскопическое изображение не дает возможности рассмотреть предмет с разных сторон.
Такая возможность появилась после изобретения голографического метода получения изображений Д. Габором в 1948 году. Он основан на волновой природе света, явлениях дифракции и интерференции.
Фотография дает только плоское изображение предметов, то есть неполную информацию о нем. Дело в том, что свет - это волна, характеризующаяся двумя основными величинами - амплитудой и фазой. Фотография дает информацию только об амплитуде излученной фотографируемым предметом световой волны, а о ее фазе ничего не сообщает. Значит, для получения полной информации о предмете нужно еще уловить фазу этой волны. Ведь именно фаза дает информацию об объемности предмета. Вот эту задачу и удалось решить Деннису Габору.
Габор Деннис (1900-1979), физик. Родился в Венгрии. С 1927 живет в Германии, с 1934 - в Великобритании, с 1967 - в США. Построил общую теорию голографии и получил первые голограммы. Нобелевская премия (1971).
Он осветил предмет (это был полупрозрачный кубик) светом ртутной лампы. В то время это был самый лучший источник световых волн с постоянной длиной волны, так называемый когерентный источник. На пути световых волн от ртутной лампы, которые отразил предмет (кубик), Габор поставил фотопластинку. Волна от лампы сложилась с волной от предмета. В результате их интерференции появилась суммарная волна, которая и была зафиксирована на фотопластинке в виде чередующихся черных и светлых полос. Ее Габор назвал голограммой. Для того чтобы вместо интерференционной картины увидеть изображение предмета, Габор поставил справа от голограммы ту же самую ртутную лампу, только теперь свет от нее шел в обратном направлении. В результате дифракции слева от голограммы возникли те же волны, которые ее создали, а в результате интерференции произошло вычитание волн, направленных навстречу друг другу, и осталась только волна от предмета. Заглянув в голограмму, Габор увидел за ней парящий в воздухе кубик - первое голографическое изображение.
Слово голография - греческое. Оно состоит из двух частей: голо - по-гречески "полный, целый, весь" и графо - "пишу". То есть слово "голография" означает "полное описание", что полностью соответствует физическому смыслу этого термина.
Однако развиваться голография стала только в 1960-х годах с появлением лазера, дающего идеальное когерентное излучение. В 1962-1963 гг. американские физики Э. Лейт и Ю. Упатниекс впервые применили лазер в качестве источника света для получения голограммы. При голографической съемке фотопластинка освещается опорным лазерным лучом и одновременно отраженным от снимаемого предмета светом. В результате сложения световых волн в плоскости пластинки возникает картина, содержащая всю информацию об отраженной световой волне. Если после проявления фотопластинки осветить ее лазерным лучом, возникает голографическая картина - голограмма. Объект съемки не только кажется объемным, но при повороте головы его действительно можно рассмотреть с разных сторон - справа, слева, сверху и снизу!
Наиболее необычное свойство голограммы состоит в том, что любой ее участок содержит информацию обо всем запечатленном на ней предмете. Причина в том, что практически на каждую точку поверхности фотопластинки падает излучение, отраженное от всех точек предмета. Если разорвать фотографию на несколько кусков, то каждый кусок будет содержать информацию только о части предмета. В то же время, если голограмму разделить на несколько фрагментов, то каждый из них будет содержать информацию обо всем предмете. В этом смысле голограмма больше похожа на зеркало, чем на фотографию. Ведь каждый кусочек разбитого зеркала отражает весь предмет. Этот факт натолкнул ученых на некоторое сходство голограммы с памятью человека. Такая аналогия ни в коей мере не является прямой, однако голографические принципы хранения информации могут быть полезными для раскрытия механизмов человеческой памяти.
Способ получения голограммы на фотопластинке с толстым слоем эмульсии, разработанный в 1962-1963 гг. Ю.Н. Денисюком, позволяет рассматривать голограмму при освещении ее обычным осветителем или солнечным светом. Толщина слоя эмульсии намного больше длины световой волны, поэтому интерференционная картина встречных предметного и опорного пучков света возникает в толще эмульсии и образует объемную голограмму. При проявлении изображение формируется в ней в виде микроскопических зеркал. Такую голограмму можно рассматривать только в отраженном белом свете. Голографическое изображение "по Денисюку", подобно фотографическому, занимает всю поверхность голограммы. Этим оно отличается от голографического изображения "по Габору". Объемную голограмму записывают в слое светочувствительного пластика - фоторезиста. С помощью химической обработки на пластмассовой пластинке формируют рельеф. Затем ее покрывают никелем и превращают в матрицу, с помощью которой на тонкой ленте штампуют копии голограмм. Такие радужные наклейки можно помещать на товарные упаковки и документы для защиты от подделки.
