- •29 Серпня 2014 р.
- •2014 М.Бердичів
- •Заняття № 34
- •Тема 2.1: Основні положення опору матеріалів План
- •2. Метод перерізів і його застосування для визначення внутрішніх силових факторів.
- •Напруження: повне, нормальне, дотичне.
- •Основні гіпотези і припущення в опорі матеріалів.
- •Заняття № 35
- •Тема 2: Розтяг і стиск. План
- •1. Сутність деформації розтяг та стиск, внутрішні силові фактори при ній. Побудова епюр «n» та «σ»
- •Розтягнутий стержень деформується , як це зображено на рисунку 2.2, і змінює свої подовжні та поперечні розміри на відповідні величини та (при стиску було б та ). Відносні деформації:
- •4. Розв'язання задачі
- •Питання для самоконтролю
- •Заняття № 36 Тема: Розтяг і стиск. План
- •1. Аналіз напруженого стану при одновісьовому розтязі. Максимальні дотичні напруження.
- •Заняття № 37 Тема: Розтяг і стиск План
- •Випробування матеріалів на розтяг. Діаграма розтягу зразків з низьковуглецевої сталі, її характеристики.
- •Заняття № 38 Тема: Розтяг і стиск План
- •1. Коефіцієнт запасу міцності. Допустимі напруження.
- •2. Умови міцності і жорсткості. Види розрахунків
- •Заняття № 41 Тема: Розтяг і стиск план
- •1. Статично невизначені системи
- •Заняття № 42 Тема: Практичні розрахунки на зріз і зминання. План
- •1. Розрахунки на міцність при деформації “зсув”
- •Розрахунки на зріз і зминання з΄єднань.
- •Умова міцності для зварного з’єднання (рисунок 4) має вигляд
- •Заняття № 45 Тема: 2.4. Геометричні характеристики плоских перерізів План
- •1. Полярний, осьовий, відцентровий моменти інерції.
- •2. Головні осі й головні моменти інерції
- •3. Залежності між моментами інерції щодо паралельних осей
- •4. Осьовий і полярний моменти опору
- •5. Моменти інерції деяких найпростіших перетинів
- •Заняття № 46
- •Визначення головних моментів інерції складних перерізів
- •Заняття № 47 Тема: 2.5. Кручення План
- •2. Кручення стержнів із круглим поперечним перерізом
- •Заняття № 48 Тема: Кручення
- •1. Кручення прямого бруса круглого перерізу. Основні гіпотези. Напруження в поперечному перерізі брусу. Кут закручення. Полярні моменти інерції для круга та кільця. Момент опору.
- •Заняття № 49
- •Розрахунки на міцність при крученні
- •Перевірочний розрахунок
- •2. Проектний розрахунок
- •3. Визначення допустимого навантаження
- •Перевірочний розрахунок
- •2. Проектний розрахунок
- •3. Визначення допустимого навантаження
- •Заняття № 50
- •Заняття № 52
- •Основні поняття і визначення. Класифікація видів згину
- •Внутрішні силові фактори при згині. Правила визначення знаків поперечних сил і згинальних моментів
- •Запитання для самоперевірки
- •Заняття № 53
- •1. Диференційні залежності при згинанні
- •2. Правила побудови епюр поперечних сил і згинальних моментів.
- •1. Нормальні напруження при чистому згині
- •2. Розрахунки на міцність при згині.
- •3.Визначення допустимого навантаження.
- •Заняття № 55 Тема: Згин План
- •Заняття № 56 Тема: Згин План
- •Дотичні напруження при згині. Формула Журавського.
- •З аняття № 61 Тема: Сумісна дія розтягу (стиску) і згину брусу великої жорсткості. План
- •1. Сумісна дія згину та розтягу (або стиску). Згин
- •З аняття № 62 Тема: Гіпотези міцності та їх застосування. План
- •З аняття № 64 Тема: Гіпотези міцності та їх застосування. План
- •Заняття № 65 Тема: 2.8. Стійкість стиснутих стержнів План
- •1. Стійка і нестійка пружна рівновага
- •2. Формула Ейлера для визначення критичної сили стиснутого стрижня
- •Критичне напруження. Гнучкість. Границя застосування формули Ейлера.
- •14.5. Розрахунки на стійкість за допомогою коефіцієнтів зменшення основного допустимого напруження
- •1. Виникнення змінних напружень. Цикли напружень. Амплітуда циклу, коефіцієнт асиметрії циклу.
- •1. Вплив конструктивно-технологічних факторів на границю витривалості
- •2. Розрахунок на міцність при повторно-змінних напругах
- •Основні поняття. Формули для визначення контактних напружень
- •Перевірка міцності при контактних напруженнях. Приклади розрахунку.
- •1. Основні поняття
- •18.2. Формули для визначення контактних напружень
- •18.3. Перевірка міцності при контактних напруженнях
- •Література
Заняття № 35
Тема 2: Розтяг і стиск. План
Сутність деформації розтяг та стиск, внутрішні силові фактори при ній . Побудова епюр «N» та «σ» .
Поздовжні і поперечні деформації при розтязі (стиску). Закон Гука. Коефіцієнт поперечної деформації (Пунсона). Жорсткість перерізів жорсткість брусу.
Визначення осьових переміщень поперечних перерізів
Розв’язання задачі. Побудова епюр «N», «σ» і визначення абсолютного подовження
ЛІТЕРАТУРА ОСНОВНА
ЛІТЕРАТУРА ДОДАТКОВА
Студенти повинні знати: внутрішні силові фактори при розтязі, правила побудови епюр поздовжніх мил і нормальних напружень, вміти визначати осьове подоаження.
Студенти повинні вміти: будувати епюри та визначати осьове подовження.
1. Сутність деформації розтяг та стиск, внутрішні силові фактори при ній. Побудова епюр «n» та «σ»
Розтяг або стиск стержня викликається силами, що діють уздовж його осі (рис.2.1,а). При цьому в поперечних перерізах із шести внутрішніх силових факторів виникає тільки один — поздовжня (осьова) сила N, епюра якої наведена на рис.2.1,б. Осьова сила в перетині є рівнодіючою нормальних напруг, що виникають у кожній із точок перетину. Відсутність поперечних сил дає підставу припустити, що дотичні напруги в кожній точці поперечного перерізу дорівнюють нулю.
А яким чином ми будемо визначати напруги при розтязі та стиску ?
Розглянемо геометричну сторону завдання. При спостереженні деформації розтягу стержня, на поверхні якого нанесені лінії, перпендикулярні до осі брусу (рис.1,а), можна відзначити, що ці лінії, зміщуючись паралельно самим собі, залишаються прямими й перпендикулярними до осі бруса. Припускаючи, що зазначена картина переміщення перетинів має місце й усередині стержня, приходимо до гіпотези плоских перерізів: поперечні перерізи стержня, плоскі до деформації, залишаються плоскими й після неї, переміщуючись поступально уздовж осі стержня.
а |
|
б |
|
в |
|
Рис.1. Поздовжня сила в перетині і її епюра
Розіб'ємо
стержень на поздовжні (паралельні осі
стрижня) елементи нескінченно малих
поперечних перерізів і будемо надалі
називати їх волокнами. На
підставі гіпотези плоских перетинів
варто укласти, що всі волокна подовжуються
на ту саму величину і їхні відносні
подовження
однакові:
|
(1) |
Це аналітичне вираження геометричної сторони завдання.
Фізична сторона розглянутого завдання полягає у встановленні залежності деформацій від напруг. При пружних деформаціях ця залежність підкоряється закону Гука:
|
(2) |
де Е — модуль пружності першого роду.
З огляду на сталість модуля пружності Е для однорідного ізотропного матеріалу, а також(1)і (2), знаходимо, що
|
(3) |
Підставляючи вираз (2.2) в (2.3), одержуємо
|
(4) |
Звідки
|
(5) |
Знак напруги залежить від знака поздовжньої сили в розглянутому перетині. У випадку стиску напруги вважають від'ємними. Формула (5) справедлива лише для перетинів, досить віддалених від місць прикладення зосереджених навантажень.
Визначаючи напруги при розтягу, стиску й інших видах деформацій, широко користуються положенням, що носить назву принципу Сен-Венана: якщо тіло навантажується статично еквівалентними системами сил, тобто такими, у яких головний вектор і головний момент однакові, і при цьому розміри області додатка навантажень невеликі в порівнянні з розмірами тіла, то в перетинах, досить вилучених від місць додатка сил, напруги мало залежать від способу навантаження.
Загального теоретичного доказу принцип Сен-Венана не має, але його справедливість підтверджується численними теоретичними й експериментальними дослідженнями.
Пояснимо цей принцип на наступному прикладі. Той самий стрижень, закріплений верхнім кінцем, навантажується на вільному кінці статично еквівалентними навантаженнями, рівнодіючі яким виражаються величиною вектора F. Навантаження прикладені різними способами: а) у вигляді зосередженої осьової сили; б) у вигляді двох сил; в) у вигляді розподіленого навантаження. Дослідження показують, що у всіх випадках у поперечному перерізі, віддаленому на відстань, що перевищує в 1, 5-2 рази його поперечні розміри, напруги практично однакові. У перетинах же, розташованих близько від місця додатка сил, величина напруг і характер їхніх розподілів різні.
2.3.2. Поздовжні і поперечні деформації при розтязі стиску).Закон Гука. Коефіцієнт поперечної деформації (Пунсона). Жорсткість перерізів, жорсткість русу. Визначення осьових переміщень поперечних перерізів
Осьовим
(центральним) розтягом
або стиском
брусу – називається такий простий вид
навантаження, при якому єдиним внутрішнім
силовим фактором у поперечному перерізі
цього стержня є внутрішня
поздовжня сила
.
П
ростіше
за все цей вид навантаження можна
реалізувати, якщо прикласти до стержня
зовнішні сили
,
лінія дії котрих збігається з його віссю
(рисунок 2.2 а).
Рисунок 2 Модель розтягу брусу
Для визначення внутрішньої подовжньої сили застосуємо метод перерізів (рисунок 2 б).
З
умов рівноваги уявно відрізаної частини
стержня отримаємо:
.
У загальному випадку, коли зовнішніх сил декілька, маємо правило:
Подовжня сила у поперечному перерізі стержня чисельно дорівнює алгебраїчній сумі проекцій на вісь стержня зовнішніх сил, розташованих з однієї сторони перерізу.
Правило
знаків:
,
якщо вона розтягує (направлена від
перерізу);
,
якщо вона стискає (направлена до
перерізу).
У поперечних перерізах діють тільки рівномірно розподілені (гіпотеза Бернуллі) нормальні напруження σ, що можуть визначатися за формулою
, (5)
де
– площа перерізу.
