- •29 Серпня 2014 р.
- •2014 М.Бердичів
- •Заняття № 34
- •Тема 2.1: Основні положення опору матеріалів План
- •2. Метод перерізів і його застосування для визначення внутрішніх силових факторів.
- •Напруження: повне, нормальне, дотичне.
- •Основні гіпотези і припущення в опорі матеріалів.
- •Заняття № 35
- •Тема 2: Розтяг і стиск. План
- •1. Сутність деформації розтяг та стиск, внутрішні силові фактори при ній. Побудова епюр «n» та «σ»
- •Розтягнутий стержень деформується , як це зображено на рисунку 2.2, і змінює свої подовжні та поперечні розміри на відповідні величини та (при стиску було б та ). Відносні деформації:
- •4. Розв'язання задачі
- •Питання для самоконтролю
- •Заняття № 36 Тема: Розтяг і стиск. План
- •1. Аналіз напруженого стану при одновісьовому розтязі. Максимальні дотичні напруження.
- •Заняття № 37 Тема: Розтяг і стиск План
- •Випробування матеріалів на розтяг. Діаграма розтягу зразків з низьковуглецевої сталі, її характеристики.
- •Заняття № 38 Тема: Розтяг і стиск План
- •1. Коефіцієнт запасу міцності. Допустимі напруження.
- •2. Умови міцності і жорсткості. Види розрахунків
- •Заняття № 41 Тема: Розтяг і стиск план
- •1. Статично невизначені системи
- •Заняття № 42 Тема: Практичні розрахунки на зріз і зминання. План
- •1. Розрахунки на міцність при деформації “зсув”
- •Розрахунки на зріз і зминання з΄єднань.
- •Умова міцності для зварного з’єднання (рисунок 4) має вигляд
- •Заняття № 45 Тема: 2.4. Геометричні характеристики плоских перерізів План
- •1. Полярний, осьовий, відцентровий моменти інерції.
- •2. Головні осі й головні моменти інерції
- •3. Залежності між моментами інерції щодо паралельних осей
- •4. Осьовий і полярний моменти опору
- •5. Моменти інерції деяких найпростіших перетинів
- •Заняття № 46
- •Визначення головних моментів інерції складних перерізів
- •Заняття № 47 Тема: 2.5. Кручення План
- •2. Кручення стержнів із круглим поперечним перерізом
- •Заняття № 48 Тема: Кручення
- •1. Кручення прямого бруса круглого перерізу. Основні гіпотези. Напруження в поперечному перерізі брусу. Кут закручення. Полярні моменти інерції для круга та кільця. Момент опору.
- •Заняття № 49
- •Розрахунки на міцність при крученні
- •Перевірочний розрахунок
- •2. Проектний розрахунок
- •3. Визначення допустимого навантаження
- •Перевірочний розрахунок
- •2. Проектний розрахунок
- •3. Визначення допустимого навантаження
- •Заняття № 50
- •Заняття № 52
- •Основні поняття і визначення. Класифікація видів згину
- •Внутрішні силові фактори при згині. Правила визначення знаків поперечних сил і згинальних моментів
- •Запитання для самоперевірки
- •Заняття № 53
- •1. Диференційні залежності при згинанні
- •2. Правила побудови епюр поперечних сил і згинальних моментів.
- •1. Нормальні напруження при чистому згині
- •2. Розрахунки на міцність при згині.
- •3.Визначення допустимого навантаження.
- •Заняття № 55 Тема: Згин План
- •Заняття № 56 Тема: Згин План
- •Дотичні напруження при згині. Формула Журавського.
- •З аняття № 61 Тема: Сумісна дія розтягу (стиску) і згину брусу великої жорсткості. План
- •1. Сумісна дія згину та розтягу (або стиску). Згин
- •З аняття № 62 Тема: Гіпотези міцності та їх застосування. План
- •З аняття № 64 Тема: Гіпотези міцності та їх застосування. План
- •Заняття № 65 Тема: 2.8. Стійкість стиснутих стержнів План
- •1. Стійка і нестійка пружна рівновага
- •2. Формула Ейлера для визначення критичної сили стиснутого стрижня
- •Критичне напруження. Гнучкість. Границя застосування формули Ейлера.
- •14.5. Розрахунки на стійкість за допомогою коефіцієнтів зменшення основного допустимого напруження
- •1. Виникнення змінних напружень. Цикли напружень. Амплітуда циклу, коефіцієнт асиметрії циклу.
- •1. Вплив конструктивно-технологічних факторів на границю витривалості
- •2. Розрахунок на міцність при повторно-змінних напругах
- •Основні поняття. Формули для визначення контактних напружень
- •Перевірка міцності при контактних напруженнях. Приклади розрахунку.
- •1. Основні поняття
- •18.2. Формули для визначення контактних напружень
- •18.3. Перевірка міцності при контактних напруженнях
- •Література
Заняття № 46
Тема: Геометричні характеристики плоских перерізів.
План
Визначення головних центральних моментів інерції складних перерізів.
Студент повинен знати: визначення статичного, полярного, осьового моменту інерції поперечних перерізів, визначення осьових моментів інерції поперечних перерізів відносно параленьних осей, визначення головних центральних осей.
Студент повинен вміти:визначати статичний, полярний, осьовий моменти інерції поперечних перерізів складної форми.
ЛІТЕРАТУРА ОСНОВНА
ЛІТЕРАТУРА ДОДАТКОВА
Визначення головних моментів інерції складних перерізів
можна запропонувати такий порядок обчислення головних моментів інерції складних фігур, що мають вісь симетрії.
Приклад
1. Обчислити
головні моменти інерції тавра /рис.12/.
Розв'язання. Розбиваємо тавр на два простих прямокутники. Перший прямокутник площею А1 = 6а•2а = 12а2 має центр ваги в точці С1, його центральні осі позначимо z1 і y1. Відносно цих осей, користуючись формулами , визначимо осьові моменти інерції прямокутника:
Рис. 12. Схема до обчислення моментів інерції складної площі поперечного перерізу.Другий прямокутник має площу А2 = 4а •3а = 12а2 , його центр ваги - С2 і центральні осі z2 ,y2 .Центральні моменти інерції другого прямокутника
За одну з головних центральних осей інерції V беремо вісь симетрії тавра. Оскільки осі у1 і у2 збігаються з головною віссю V, то момент інерції тавра відносно осі V буде
Для визначення положення головної центральної осі u встановимо центр ваги тавра С. За допоміжну систему координат візьмемо осі V і Z2 . Тоді ордината центра ваги фігури
Абсциса центра ваги площі фігури розміщена на центральній осі V . Визначене таким чином положення центра ваги С показано на рис.12. Провівши через точку С пряму, перпендикулярну до осі симетрії, матимемо другу головну центральну вісь U.
Позначимо відстані від осі U до паралельних їй осей z1 і z2 відповідно через а1 та а2. Головний центральний момент інерції тавра відносно осі U визначаємо за формулою ІuІ = IuI + IuII, де IuI і IuII - моменти інерції відповідно першого і другого прямокутника відносно осі U. Використовуючи формулу /5.16/, дістаємо
,
Запитання для самоперевірки
1. Перелічити та дати визначення основних геометричних характеристик поперечних перерізів бруса.
2. Як найбільш раціонально визначити координати центра ваги складної плоскої фігури?
3. Як визначаються моменти інерції трикутника, прямокутника, круга?
4. Як змінюються моменти інерції в разі паралельного перенесення осей?
5. Осьові моменти інерції двох кругів відносяться як 16:1. Як відносяться їх площі?
6. Що розуміють під головними осями інерції?
Заняття № 47 Тема: 2.5. Кручення План
Чистий зсув. Закон паралельності дотичних напружень. Закон Гука для зсуву, модуль зсуву. Залежність між трьома постійними для ізотропного тіла.
Кручення стержнів із круглим поперечним перерізом. Внутрішні зусилля при крученні. Крутні моменти та їх епюри.
Студент повинен знати: визначення чистого зсуву. Закон Гука. Внутрішні силові фіктори при крученні.
Студент повинен вміти: будувати епюри крутних моментів.
ЛІТЕРАТУРА ОСНОВНА
ЛІТЕРАТУРА ДОДАТКОВА
Чистий зсув. Закон паралельності дотичних напружень. Закон Гука для зсуву, модуль зсуву. Залежність між трьома постійними для ізотропного тіла.
У розрахунках деяких елементів конструкцій зустрічається вид
навантаження, коли в перерізах діють тільки дотичні напруження. Такий
напружений стан називається чистим зсувом. Він характеризується зміною
спочатку прямих кутів – кутовою деформацією чи відносним зсувом.
К
утові
деформації є наслідком дотичних напружень
і зв'язані з ними
функціональними залежностями. Умежах пружності між відносним зсувом
і дотичними напруженнями (рис.1),
що діють по гранях елемента, існує
лінійна залежність. Ця залежність
називається законом Гука при зсуві:
(1)
Рис. 1
де G – модуль пружності другого роду (модуль пружності при зсуві). Він
визначається дослідним шляхом і є характеристикою матеріалу;
-
кутова
деформація.
Співвідношення (1) можна подати у вигляді
(2)
Для ізотропних матеріалів між модулем пружності при зсуві і
модулем
пружності при розтягу-стиску
існує зв'язок
виду:
де E – модуль пружності при розтягу-стиску;
μ - коефіцієнт Пуассона.
