- •29 Серпня 2014 р.
- •2014 М.Бердичів
- •Заняття № 34
- •Тема 2.1: Основні положення опору матеріалів План
- •2. Метод перерізів і його застосування для визначення внутрішніх силових факторів.
- •Напруження: повне, нормальне, дотичне.
- •Основні гіпотези і припущення в опорі матеріалів.
- •Заняття № 35
- •Тема 2: Розтяг і стиск. План
- •1. Сутність деформації розтяг та стиск, внутрішні силові фактори при ній. Побудова епюр «n» та «σ»
- •Розтягнутий стержень деформується , як це зображено на рисунку 2.2, і змінює свої подовжні та поперечні розміри на відповідні величини та (при стиску було б та ). Відносні деформації:
- •4. Розв'язання задачі
- •Питання для самоконтролю
- •Заняття № 36 Тема: Розтяг і стиск. План
- •1. Аналіз напруженого стану при одновісьовому розтязі. Максимальні дотичні напруження.
- •Заняття № 37 Тема: Розтяг і стиск План
- •Випробування матеріалів на розтяг. Діаграма розтягу зразків з низьковуглецевої сталі, її характеристики.
- •Заняття № 38 Тема: Розтяг і стиск План
- •1. Коефіцієнт запасу міцності. Допустимі напруження.
- •2. Умови міцності і жорсткості. Види розрахунків
- •Заняття № 41 Тема: Розтяг і стиск план
- •1. Статично невизначені системи
- •Заняття № 42 Тема: Практичні розрахунки на зріз і зминання. План
- •1. Розрахунки на міцність при деформації “зсув”
- •Розрахунки на зріз і зминання з΄єднань.
- •Умова міцності для зварного з’єднання (рисунок 4) має вигляд
- •Заняття № 45 Тема: 2.4. Геометричні характеристики плоских перерізів План
- •1. Полярний, осьовий, відцентровий моменти інерції.
- •2. Головні осі й головні моменти інерції
- •3. Залежності між моментами інерції щодо паралельних осей
- •4. Осьовий і полярний моменти опору
- •5. Моменти інерції деяких найпростіших перетинів
- •Заняття № 46
- •Визначення головних моментів інерції складних перерізів
- •Заняття № 47 Тема: 2.5. Кручення План
- •2. Кручення стержнів із круглим поперечним перерізом
- •Заняття № 48 Тема: Кручення
- •1. Кручення прямого бруса круглого перерізу. Основні гіпотези. Напруження в поперечному перерізі брусу. Кут закручення. Полярні моменти інерції для круга та кільця. Момент опору.
- •Заняття № 49
- •Розрахунки на міцність при крученні
- •Перевірочний розрахунок
- •2. Проектний розрахунок
- •3. Визначення допустимого навантаження
- •Перевірочний розрахунок
- •2. Проектний розрахунок
- •3. Визначення допустимого навантаження
- •Заняття № 50
- •Заняття № 52
- •Основні поняття і визначення. Класифікація видів згину
- •Внутрішні силові фактори при згині. Правила визначення знаків поперечних сил і згинальних моментів
- •Запитання для самоперевірки
- •Заняття № 53
- •1. Диференційні залежності при згинанні
- •2. Правила побудови епюр поперечних сил і згинальних моментів.
- •1. Нормальні напруження при чистому згині
- •2. Розрахунки на міцність при згині.
- •3.Визначення допустимого навантаження.
- •Заняття № 55 Тема: Згин План
- •Заняття № 56 Тема: Згин План
- •Дотичні напруження при згині. Формула Журавського.
- •З аняття № 61 Тема: Сумісна дія розтягу (стиску) і згину брусу великої жорсткості. План
- •1. Сумісна дія згину та розтягу (або стиску). Згин
- •З аняття № 62 Тема: Гіпотези міцності та їх застосування. План
- •З аняття № 64 Тема: Гіпотези міцності та їх застосування. План
- •Заняття № 65 Тема: 2.8. Стійкість стиснутих стержнів План
- •1. Стійка і нестійка пружна рівновага
- •2. Формула Ейлера для визначення критичної сили стиснутого стрижня
- •Критичне напруження. Гнучкість. Границя застосування формули Ейлера.
- •14.5. Розрахунки на стійкість за допомогою коефіцієнтів зменшення основного допустимого напруження
- •1. Виникнення змінних напружень. Цикли напружень. Амплітуда циклу, коефіцієнт асиметрії циклу.
- •1. Вплив конструктивно-технологічних факторів на границю витривалості
- •2. Розрахунок на міцність при повторно-змінних напругах
- •Основні поняття. Формули для визначення контактних напружень
- •Перевірка міцності при контактних напруженнях. Приклади розрахунку.
- •1. Основні поняття
- •18.2. Формули для визначення контактних напружень
- •18.3. Перевірка міцності при контактних напруженнях
- •Література
3. Залежності між моментами інерції щодо паралельних осей
Установимо залежність між осьовими моментами інерції щодо двох паралельних осей, з яких одна є центральною (рис.8).
Рис.8. Моменти інерції щодо паралельних осей
Нехай
момент інерції
щодо
центральної осі, площа перетину
й
відстань
між
осями
й
відомі.
Визначимо
момент інерції
. Відстань
від довільної площадки
до
осі
позначимо
, а
до осі
позначимо
. По
визначенню
|
По кресленню (рис.8)
|
Підставляючи
значення
у
вираз для
, маємо:
|
Вісь
за
умовою центральна, отже,
.
Остаточно одержуємо наступну формулу зміни моменту інерції при переході від центральної осі до паралельного їй нецентральної:
|
(8) |
Аналогічно,
|
Схожу залежність можна одержати й для відцентрових моментів інерції:
|
(9) |
При
застосуванні цієї формули
величини
й
треба
підставляти з їхніми знаками.
4. Осьовий і полярний моменти опору
Ці найважливіші геометричні характеристики будемо називати похідними, тому що вони визначаються через уже відомі моменти інерції й формально вводяться у вигляді
|
(10) |
де
—
відстані від осей y, x і
центра координат до найбільш вилучених
від них точок перетину відповідно;
У
відповідності з (6), всі ці величини
виміряються в
(система
СИ) або
(розмірність,
зручна для практичних розрахунків).
Моменти інерції при крутінні й моменти опору крутінню
Найчастіше крутінню піддаються стрижні круглого перетину (вали). У цьому випадку відповідні геометричні характеристики перетини називаються полярним моментом інерції й полярним моментом опору (про що вже було сказано вище) і обчислюються по формулах
|
(11) |
Якщо ж вали є порожніми, то
|
(12) |
де c = d / D; D — зовнішній діаметр вала; d — внутрішній.
У
той же час в інженерній практиці
зустрічаються випадки, коли крутінню
піддаються стрижні некруглого поперечного
перерізу. Відповідні геометричні
характеристики називаються моментом
інерції при крутінні
й
моментом опору при крутінні
.
Найчастіше доводиться зіштовхуватися
із крутінням стрижнів прямокутного або
квадратного перетину, тоді
й
визначаються
по формулах
|
(2.13) |
де
й
—
коефіцієнти, що залежать від
відношення h до b,
і визначені відповідно до табл.2.1.
Таблиця 2.1 |
h / b |
1 |
1,5 |
1,75 |
2,0 |
2,5 |
3,0 |
4,0 |
6,0 |
8,0 |
10,0 |
|
|
0,208 |
0,231 |
0,239 |
0,246 |
0,256 |
0,267 |
0,282 |
0,299 |
0,307 |
0,313 |
0,333 |
|
0,141 |
0,196 |
0,214 |
0,229 |
0,249 |
0,263 |
0,281 |
0,299 |
0,307 |
0,313 |
0,333 |
