- •29 Серпня 2014 р.
- •2014 М.Бердичів
- •Заняття № 34
- •Тема 2.1: Основні положення опору матеріалів План
- •2. Метод перерізів і його застосування для визначення внутрішніх силових факторів.
- •Напруження: повне, нормальне, дотичне.
- •Основні гіпотези і припущення в опорі матеріалів.
- •Заняття № 35
- •Тема 2: Розтяг і стиск. План
- •1. Сутність деформації розтяг та стиск, внутрішні силові фактори при ній. Побудова епюр «n» та «σ»
- •Розтягнутий стержень деформується , як це зображено на рисунку 2.2, і змінює свої подовжні та поперечні розміри на відповідні величини та (при стиску було б та ). Відносні деформації:
- •4. Розв'язання задачі
- •Питання для самоконтролю
- •Заняття № 36 Тема: Розтяг і стиск. План
- •1. Аналіз напруженого стану при одновісьовому розтязі. Максимальні дотичні напруження.
- •Заняття № 37 Тема: Розтяг і стиск План
- •Випробування матеріалів на розтяг. Діаграма розтягу зразків з низьковуглецевої сталі, її характеристики.
- •Заняття № 38 Тема: Розтяг і стиск План
- •1. Коефіцієнт запасу міцності. Допустимі напруження.
- •2. Умови міцності і жорсткості. Види розрахунків
- •Заняття № 41 Тема: Розтяг і стиск план
- •1. Статично невизначені системи
- •Заняття № 42 Тема: Практичні розрахунки на зріз і зминання. План
- •1. Розрахунки на міцність при деформації “зсув”
- •Розрахунки на зріз і зминання з΄єднань.
- •Умова міцності для зварного з’єднання (рисунок 4) має вигляд
- •Заняття № 45 Тема: 2.4. Геометричні характеристики плоских перерізів План
- •1. Полярний, осьовий, відцентровий моменти інерції.
- •2. Головні осі й головні моменти інерції
- •3. Залежності між моментами інерції щодо паралельних осей
- •4. Осьовий і полярний моменти опору
- •5. Моменти інерції деяких найпростіших перетинів
- •Заняття № 46
- •Визначення головних моментів інерції складних перерізів
- •Заняття № 47 Тема: 2.5. Кручення План
- •2. Кручення стержнів із круглим поперечним перерізом
- •Заняття № 48 Тема: Кручення
- •1. Кручення прямого бруса круглого перерізу. Основні гіпотези. Напруження в поперечному перерізі брусу. Кут закручення. Полярні моменти інерції для круга та кільця. Момент опору.
- •Заняття № 49
- •Розрахунки на міцність при крученні
- •Перевірочний розрахунок
- •2. Проектний розрахунок
- •3. Визначення допустимого навантаження
- •Перевірочний розрахунок
- •2. Проектний розрахунок
- •3. Визначення допустимого навантаження
- •Заняття № 50
- •Заняття № 52
- •Основні поняття і визначення. Класифікація видів згину
- •Внутрішні силові фактори при згині. Правила визначення знаків поперечних сил і згинальних моментів
- •Запитання для самоперевірки
- •Заняття № 53
- •1. Диференційні залежності при згинанні
- •2. Правила побудови епюр поперечних сил і згинальних моментів.
- •1. Нормальні напруження при чистому згині
- •2. Розрахунки на міцність при згині.
- •3.Визначення допустимого навантаження.
- •Заняття № 55 Тема: Згин План
- •Заняття № 56 Тема: Згин План
- •Дотичні напруження при згині. Формула Журавського.
- •З аняття № 61 Тема: Сумісна дія розтягу (стиску) і згину брусу великої жорсткості. План
- •1. Сумісна дія згину та розтягу (або стиску). Згин
- •З аняття № 62 Тема: Гіпотези міцності та їх застосування. План
- •З аняття № 64 Тема: Гіпотези міцності та їх застосування. План
- •Заняття № 65 Тема: 2.8. Стійкість стиснутих стержнів План
- •1. Стійка і нестійка пружна рівновага
- •2. Формула Ейлера для визначення критичної сили стиснутого стрижня
- •Критичне напруження. Гнучкість. Границя застосування формули Ейлера.
- •14.5. Розрахунки на стійкість за допомогою коефіцієнтів зменшення основного допустимого напруження
- •1. Виникнення змінних напружень. Цикли напружень. Амплітуда циклу, коефіцієнт асиметрії циклу.
- •1. Вплив конструктивно-технологічних факторів на границю витривалості
- •2. Розрахунок на міцність при повторно-змінних напругах
- •Основні поняття. Формули для визначення контактних напружень
- •Перевірка міцності при контактних напруженнях. Приклади розрахунку.
- •1. Основні поняття
- •18.2. Формули для визначення контактних напружень
- •18.3. Перевірка міцності при контактних напруженнях
- •Література
2. Головні осі й головні моменти інерції
Осі, щодо яких відцентровий момент інерції дорівнює нулю, називаються головними осями (іноді їх називають головними осями інерції). Через будь-яку точку, узяту в площині перетину, можна провести в загальному випадку дві головних осі (у деяких окремих випадках їх може бути незліченна безліч). Для того щоб переконатися в справедливості цього твердження, розглянемо, як змінюється відцентровий момент інерції при повороті осей на 90° (рис.2.9).
Рис.5. До визначення положення головних осей
Для
довільної площадки
, узятої
в першому квадранті системи осей
обидві
координати, а, отже, і їхній добуток,
додатній. У новій системі координат, поверненої
щодо первісної на 90°, добуток координат
розглянутої площадки від'ємний. Абсолютна
величина цього добутку не змінюється,
тобто
Очевидно,
те ж має місце й для будь-якої іншої
елементарної площадки. Значить і знак
суми
який
уявляє собою відцентровий момент інерції
перетину, при повороті осей на 90°
змінюється на протилежний, тобто
|
У процесі повороту осей, мабуть, відцентровий момент інерції змінюється безупинно, і, отже, при деякому положенні осей він стає рівним нулю. Ці осі і є головними.
Головні осі можна провести через будь-яку точку перетину, але практичний інтерес представляють тільки ті з них, які проходять через центр ваги перетину; вони називаються головними центральними осями.
У загальному випадку перетину довільної форми для визначення положення головних центральних осей необхідно провести спеціальне дослідження. Зараз обмежимося розглядом досить важливих окремих випадків перетинів, що мають, щонайменше, одну вісь симетрії (рис.6).
Рис.6. Головні центральні осі при наявності симетрії
Проведемо
через центр ваги перетину
вісь
перпендикулярну
осі симетрії
й
визначимо відцентровий момент
інерції
. Скористаємося
відомим з курсу математики властивістю
визначеного інтеграла (інтеграл суми
дорівнює сумі інтегралів) і представимо
у
вигляді двох доданків:
|
де
й
—
частини площі перетину, розташовані
відповідно праворуч і ліворуч від осі
симетрії.
Очевидно,
|
тому що для будь-якої елементарної площадки, розташованої праворуч від осі симетрії, є відповідна їй розташована ліворуч, для якої добуток координат відрізняється лише знаком.
Таким чином, відцентровий момент інерції щодо осей і виявився рівним нулю, тобто це головні осі. Отже, для знаходження головних осей симетричного перетину досить знайти положення його центра ваги. Однієї з головних центральних осей є вісь симетрії, друга - їй перпендикулярна.
Наведений доказ залишається в силі, якщо вісь, перпендикулярна осі симетрії, проходить і не через центр ваги перетину, тобто вісь симетрії й кожна їй перпендикулярна утворять систему головних осей.
Осьові
моменти інерції щодо головних центральних
осей називаються головними
центральними (або скорочено
головними) моментами інерції.Щодо
однієї з головних осей момент
інерції максимальний,
щодо іншої — мінімальний.
Наприклад, для перетину, зображеного
на рис.6, максимальним є момент
інерції
. Звичайно,
говорячи про екстремальність головних
моментів інерції, мається на увазі лише
їхнє порівняння з іншими моментами
інерції, обчисленими щодо осей, що
проходять через ту ж точку перетину.
Таким чином, та обставина, що один з головних моментів інерції максимальний, а інший мінімальний, можна розглядати як пояснення того, що вони (і відповідні осі) називаються головними. Рівність же нулю відцентрового моменту інерції щодо головних осей - зручна ознака для їхнього знаходження. Деякі типи перетинів, наприклад, коло, квадрат, правильний шестикутник і ін. (рис.7), мають незліченну безліч головних центральних осей. Для цих перетинів будь-яка центральна вісь є головною.
Рис.7. Перетини з незліченною безліччю головних центральних осей
Не приводячи доказу, укажемо, що у випадку, якщо два головних центральних моменти інерції перетину рівні між собою, то в цього перетину будь-яка центральна вісь головна й всі головні центральні моменти інерції однакові.
