Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
К лекциям 1-2 ВычМат ФИТ 2014.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
241.15 Кб
Скачать

Частные случаи общей схемы, изображенной на рис. 1

Зарядка и разрядка конденсатора

Заметим, что рассматриваемая схема состоит из трех электрических контуров, устроенных одинаковым образом: ключ, источник питания, три сопротивления и один конденсатор.

Поэтому остановимся подробно на первом контуре, предполагая, что два других отключены от первого (разрыв в цепи в узле 1). Формально это означает, что мы предполагаем, что и рассматриваем первые три уравнения из системы (1)-(7) изолированно – первое, второе и шестое, присвоив им номера (8)-(10):

, (8)

, (9)

. (10)

Сложив уравнения (8) и (9) и воспользовавшись соотношением (10), получим одно линейное дифференциальное уравнение первого порядка для заряда конденсатора:

. (11)

Уравнение (8), а следовательно и (11) подразумевают, что ключ К1 замкнут. Предположим, что до момента ключ был разомкнут и конденсатор был разряжен. Это означает, уравнение (11) для функции , справедливое при , мы должны дополнить начальным (по времени) условием:

. (12)

Не останавливаясь на деталях, напишем решение задачи (11)-(12) в общем случае произвольной зависимости от времени напряжения источника тока :

. (13)

Проверка того, что функция (13) удовлетворяет уравнению (11) является простым упражнением на дифференцирование. Выполнение условия (12) очевидно.

Если напряжение остается неизменным при ( ), то вычисление интеграла в (13) не составляет труда, а результат принимает вид:

(14)

Интерпретация полученного результата очевидна. Включение постоянного напряжения в цепи дает начало заряду конденсатора, при котором заряд на обкладках конденсатора меняется от 0 до . Формально этот процесс заканчивается за бесконечное время, однако уже через время заряд на конденсаторе достигает 63% от конечного, а при он уже составляет 95% от предельного. К этому времени «проходящий через конденсатор» ток уменьшается до 5% от величины в начале процесса зарядки. Поэтому физики и инженеры называют величину характерным временем заряда конденсатора.

Что будет происходить в рассматриваемом первом контуре, если после зарядки конденсатора (т.е. через время ) источник тока отключить и вместо него вставить бесконечно малое сопротивление?

Будем считать, что конденсатор к этому времени уже зарядился практически до величины на обкладках и это будет его начальным состоянием, т.е. вместо условия (12) будем иметь начальное условие для нового процесса:

. (15)

Поскольку теперь в контуре отсутствует источник тока, а добавление бесконечно малого сопротивления к пренебрежимо мало, то вместо уравнения (11) процесс будет описываться уравнением

. (16)

Решение этого уравнения с учетом начального условия (15) легко «угадать»:

(17)

Интерпретация этого результата также очевидна. Заряд на обкладках конденсатора быстро убывает до нуля с тем же характерным временем, что и он нарастал в предыдущей задаче, а ток скачком возрастает до величины (знак минус указывает на противоположное направление по отношению к току заряда) и также быстро стремиться к нулю.

Разобравшись с процессами зарядки и разрядки конденсаторов, можно рассмотреть всю схему на рис.1 при больших временах после включения двух источников токов с постоянными .