
- •1 Информационно-аналитический обзор состояния вопроса 9
- •2 Исследовательская часть 34
- •3 Технический проект (технологическая часть) 65
- •4 Безопасность и экологичность 90
- •5 Экономическая часть 103
- •Введение
- •1 Информационно-аналитический обзор состояния вопроса
- •Литье под давлением на машинах литья под давлением с холодной горизонтальной камерой прессования
- •1.1.1 Технология литья под давлением алюминиевых сплавов
- •1.1.2 Технологическая оснастка для литья под давлением алюминиевых сплавов
- •1.1.3 Машины литья под давлением с холодной горизонтальной камерой прессования
- •1.2 Поршневая пара машины литья под давлением с холодной горизонтальной камерой прессования
- •1.2.1 Варианты конструкции поршневой пары
- •1.2.2 Способы производства заготовок деталей поршневой пары
- •1.2.3 Особенности эксплуатации поршневой пары
- •1.3. Проблема эксплуатационной стойкости поршневой пары машины лпд и опыт ее решения
- •1.3.1 Эксплуатационная стойкость поршневой пары
- •1.3.2 Основные методы повышения эксплуатационной стойкости поршневой пары
- •1.4 Ключевые характеристики работы
- •2 Исследовательская часть
- •2.1 Условия эксплуатации поршневой пары: тепловой, механический и триботехнический аспекты
- •2.1.1 Тепловой аспект
- •2.1.2 Механический аспект
- •2.1.3 Триботехнический аспект
- •2.2 Разработка вариантов конструкции биметаллического пресс – поршня
- •2.2.1 Базовый вариант конструкции пресс – поршня
- •2.2.2 Вариант конструкции биметаллического пресс – поршня №1
- •2.2.3 Вариант конструкции биметаллического пресс – поршня №2
- •2.3 Сравнительная оценка поршневой пары, выполненной по новым и базовому вариантам
- •2.3.1 Расчеты для базовой конструкции пресс-поршня и конструкции биметаллического пресс-поршня №1 и №2
- •2.3.1.1 Расчеты для базовой конструкции пресс-поршня
- •2.3.1.2 Расчеты для конструкции биметаллического пресс-поршня №1
- •2.3.1.3 Расчеты для конструкции биметаллического пресс-поршня №2
- •2.3.2 Расчет варианта замены латуни на бронзу и конструкции биметаллического пресс-поршня №1 и №2
- •2.3.2.1 Расчет варианта замены латуни на бронзу и конструкции биметаллического пресс-поршня №1
- •2.3.2.2 Расчет варианта замены латуни на бронзу и конструкции биметаллического пресс-поршня №2
- •2.3.3 Сравнительная оценка
- •2.4 Выбор технологии производства литой заготовки биметаллического пресс-поршня
- •2.5 Результаты промышленного опробования на базовом предприятии
- •2.6.4 Задача технического решения
- •2.6.5 Техническая сущность технического решения
- •2.6.6 Формула технического решения
- •2.7 Выводы по главе 2
- •3 Технический проект (технологическая часть)
- •3.1 Материал «рубашки» пресс-поршня и его характеристика
- •3.2 Плавильный агрегат
- •3.2.1 Общие сведения
- •3.2.2 Футеровка печи
- •3.3 Расчет шихты, требования к компонентам шихты, их подготовка
- •3.4 Технология плавки
- •3.5 Конструирование отливки
- •3.5.1 Оценка технологичности детали и меры ее повышения для получения литой заготовки
- •3.5.2 Выбор способа литья, определение количества отливок в металлической форме
- •3.5.3 Выбор положения отливки в кокиле и поверхности разъема кокиля и модели.
- •3.6 Определение припусков на механическую обработку, литейных баз, баз механической обработки
- •3.7 Определение конфигурации и количества стержней, их крепление, фиксация, вентиляция и армирование.
- •3.8 Литниково-питающей система
- •3.8.1 Расчет времени заливки кокиля
- •3.8.2 Определение тепловых узлов, конструирование и расчет прибылей.
- •3.8.3 Выбор литниковой системы, назначение и конструкции ее элементов, определение мест подвода расплава к полости кокиля
- •Параметры литниковой системы
- •3.8.3.2 Расчет выхода годного литья для спроектированной технологии
- •3.9 Изготовления кокиля
- •Латунная оболочка(латунная рубашка),
- •Стержень (базовый пресс-поршень)
- •3.10 Стержень
- •3.13 Компьютерного моделирование заполнения литейной формы с помощью программного пакета lvmFlow
- •3.14 Выводы по главе 3
- •4 Безопасность и экологичность
- •4.1 Оценка опасных и вредных производственных факторов
- •4.2 Техника безопасности
- •4.2.1 Безопасность технологического процесса
- •4.2.2 Безопасность эксплуатации грузоподъемного оборудования
- •4.2.4 Пожарная безопасность
- •Производственная санитария
- •4.3.1 Микроклимат в производственных помещениях
- •4.3.2 Содержание вредных веществ в воздухе рабочей зоны и вентиляция помещений
- •4.4 Вредные вещества в воздухе рабочей зоны
- •4.5 Освещение
- •4.5.1 Рекомендуемые источники света для производственных помещений
- •4.6 Вентиляция
- •4.7 Шум и вибрация
- •2. Вентиляция
- •4.8 Безопасность оборудования
- •4.9 Безопасность производственных процессов
- •4.10 Защита окружающей среды
- •4.10.1 Источники загрязнения окружающей среды
- •4.10.2 Мероприятия по защите атмосферного воздуха
- •4.10.3 Мероприятия по защите водного бассейна
- •4.10.4 Утилизация твердых отходов
- •5 Экономическая часть
- •5.1 Выбор метода сравнительной оценки вариантов
- •5.2 Оценка технологической себестоимости по базовому и предлагаемому вариантам
- •5.2.1 Затраты на вспомогательные материалы
- •5.2.2 Затраты на технологическую электроэнергию
- •5.7 Вывод по главе 5
3.2 Плавильный агрегат
3.2.1 Общие сведения
На ОАО «АПЗ» в настоящее время применяют электрические индукционные тигельные печи (рисунок 3.1).
Основными элементами печи являются закрытый крышкой 1 тигель 7, помещенный внутри индуктора 3, выполненного в виде многовитковой цилиндрической спирали — трубки, внутри которой циркулирует вода для охлаждения. Магнитный поток с внешней стороны индуктора проходит по радиально расположенным магнитопроводам 4 — пакетам из трансформаторной стали. Для наклона печи при выдаче расплава в ней предусмотрен специальный механизм. Печь также включает трансформатор, блоки конденсаторов, щит управления и систему отсоса газов. Плавка шихты осуществляется электромагнитным переменным полем, которое индуцирует в шихте вихревые токи. При этом электрическая энергия переходит в теплоту, количество которой зависит от электросопротивления шихты. Питание печи осуществляется токами промышленной частоты (50 Гц).
Рисунок 3.1 – Схема устройства электрической
индукционной печи типа ИЧТ:
1 — крышка, 2 узел поворота, 3 — индуктор, 4 — магнитопроводы,
5 — металлоконструкция, 6 — подводы водяного охлаждения,
7 — тигель, 8 — площадка
Указанные преимущества делают использование ИЧТ чрезвычайно перспективным. Исходя из этого выбираем печь ИЧТ-6.
Таблица 3.2 – Индукционная тигельная печь ИЧТ-6 [27]:
Основные характеристики |
Параметры |
Емкость электропечи |
6,0 т |
Номинальная мощность (потребляемая из сети) |
1,564 МВт |
Мощность питающего трансформатора |
1,6 МВ·А |
Число фаз: питающей сети |
3 |
Контурной цепи |
1 |
Частота тока |
50 Гц |
Номинальное напряжение: питающей сети |
6000 В |
Контурной цепи |
1040 В |
Температура перегрева металла |
1500 °С |
Скорость расплавления и перегрева |
2,706 т/ч |
Удельный расход электроэнергии |
578 кВт·ч/т |
соs(j) после компенсации, не менее |
0,97 |
Расход охлаждающей воды |
14,74 м3/ч |
Масса электропечи (комплекса) |
49,84 т |
3.2.2 Футеровка печи
Футеровка ИП в значительной мере определяет надежность их работы и качество выплавляемого металла. Материал футеровки, наряду с огнеупорностью, должен быть устойчивым по отношению к химическому действии шлаков и размыванию потоками жидкого металла. В наибольшей степени таким требованиям удовлетворяет нейтральная дистенсиллиманитовая футеровка на связующем из борной кислоты.
Таблица 3.3 Характеристика футеровки индукционной печи
Футеровка |
Массовая доля составляющих,% |
Огнеу-порность, °С |
Плотность в уплотненном состоянии |
Пористость, % |
|||
SiO2 |
Al2O3 |
Fe2O3 |
Прочие |
||||
Нейтральная дистенсил-лиманитовая |
26,7 |
70,3 |
0,7 |
2,3 |
1790 |
2,80 |
22 |
Массовая доля борной кислоты при нейтральной футеровке содержанием 1,5% приводит к меньшей спекаемости, соответственно доля борной кислоты повышается до 3%. Основными компонентами высокоглиноземистой дистенсиллиманитовой футеровки являются корунд с размерами частиц 1-3 мм (40-50%) и дистенсиллиманнтовый концентрат с размером зерен 0,1-0,16 мм (40-50%) и пылевидный (10-15%). В качестве связующего применяется борная кислота (1,2-1,8%).
Дистенсиллиманит состоит из природных алюмосиликатных материалов Al2O3 (57%) и SiO2 (39%). Плотность 3,5 г/см3. Огнеупорность 1830 oС.
Электрокорунд - огнеупорный и химически стойкий сверхтвёрдый материал на основе оксида алюминия (Al2O3). Представляет собой искусственно синтезированный синтетический корунд (88-99 % Al2O3) [28].