
- •Раздел 1. Основы проектирования и расчёта общесудовых систем Тема 1.1. Назначение и классификация общесудовых систем.
- •1.1.1. Мореходные качества и обитаемость судна
- •1.1.2. Понятие общесудовых систем и их составные элементы. Классификация общесудовых систем.
- •Тема 1.2. Основы проектирования общесудовых систем.
- •1.2.1. Общие требования к общесудовым системам. Состав осс и условные графические обозначения элементов.
- •Условные обозначения элементов судовых систем
- •1.2.2. Стадии проектирования общесудовых систем.
- •1.2.3. Принципы трассировки трубопроводов и компоновки механизмов.
- •Тема 1.3. Конструктивные элементы общесудовых систем.
- •1.3.1. Трубопроводы, трубопроводные элементы и их соединения.
- •1.3.2. Судовая запорно-регулирующая арматура. Приводы арматуры.
- •1.3.3. Нагнетатели рабочих сред.
- •1.3.4. Контрольно-измерительные приборы и элементы автоматики.
- •1. Мембранные уровнемеры.
- •2. Емкостные уровнемеры.
- •3. Ультразвуковые уровнемеры.
- •Тема 1.5. Основы теплового расчёта общесудовых систем.
- •Раздел 2. Судовые системы
- •Тема 2.1. Трюмные системы
- •2.1.1. Осушительная система
- •Тема 2.2. Балластные системы
- •2.2.1. Балластная система транспортных судов.
- •2.2.2. Креновые системы
- •2.2.3. Дифферентные системы
- •Тема 2.3. Противопожарные системы
- •2.3.1. Общие сведения о противопожарной защите. Классификация систем по способу тушения.
- •2.3.2. Система водяного пожаротушения
- •2.3.3. Противопожарные распылительные системы
- •2.3.3.1. Спринклерная система.
- •2.3.3.2. Система водораспыления.
- •2.3.3.3. Система водяного орошения.
- •2.3.3.4. Система водяных завес.
- •2.3.4. Системы пенного пожаротушения.
- •2. Стационарные системы поверхностного тушения пеной средней кратности.
- •2.3.5. Системы паротушения.
- •2.3.6. Системы углекислотного тушения.
- •2.3.7. Система тушения инертными газами.
- •2.3.8. Система объёмного химического пожаротушения.
- •2.3.9. Системы порошкового пожаротушения.
- •Тема 2.4. Системы микроклимата
- •2.4.1. Общие требования к воздушной среде. Расчётные параметры воздуха и их нормирование.
- •2.4.2. Системы вентиляции.
- •2.4.3. Системы отопления.
- •1. Системы водяного отопления.
- •2. Системы парового отопления.
- •3. Системы электрического отопления.
- •2.4.4. Системы осушения воздуха.
- •2.4.5. Системы кондиционирования воздуха.
- •1. Одноканальная центральная скв с рециркуляцией и выпускными воздухораспределителями.
- •2. Одноканальная местно-центральная скв без рециркуляции с доводочными воздухораспределителями.
- •3. Двухканальная центральная скв с рециркляцией и доводочными воздухораспределителями-смесителями.
- •2.4.6. Устройство простейшего кондиционера. Отображение процессов обработки воздуха в кондиционере на is-диаграмме.
- •1. Летний режим.
- •2. Зимний режим.
- •Тема 2.5. Санитарные системы.
- •2.5.1. Системы бытового водоснабжения.
- •1. Системы пресной воды.
- •2. Система бытовой забортной воды.
- •2.5.2. Сточно-фановые системы.
- •Тема 2.5. Системы общесудового энергоснабжения
- •2.5.1. Системы сжатого воздуха.
- •2.6.2. Системы гидравлики.
- •Раздел 3. Судовые устройства.
- •Тема 3.1. Рулевое устройство.
- •Тема 3.2. Средства активного управления судном.
- •Тема 3.3. Якорное устройство.
- •Тема 3.4. Швартовное устройство.
- •Тема 3.5. Буксирное устройство.
- •Тема 3.6. Грузовое устройство
- •Тема 3.7. Спасательные средства
1.3.3. Нагнетатели рабочих сред.
Для перемещения рабочих сред по трубопроводам необходимо сообщить им определённый запас механической энергии.
Повышение удельной механической энергии (напора) сред осуществляется нагнетателями (гидравлическими механизмами), которые бывают следующих типов:
для нагнетания жидких сред – насосы;
для нагнетания газообразных сред – вентиляторы, воздуходувки и компрессоры.
Каждый гидравлический механизм характеризуется следующими основными параметрами:
1. Производительность – количество жидкости (газа), перемещаемое в единицу времени. Измеряется в объёмных (м3/с, также используются единицы м3/ч) или массовых (кг/с, также используется единицы т/ч) единицах.
2. Напор Н – приращение энергии единицы массы жидкости в гидравлическом механизме (разность удельных энергий жидкости на выходе из механизма и на входе в него). Измеряется в Дж/кг, также используется единица – метр столба перекачиваемой жидкости. Энергия, отнесённая к единице объёма, даёт давление жидкости Р, Па. Напор и давление связаны зависимостью Р = Н.
3. Полезная, или гидравлическая, мощность NП, Вт:
,
где G – массовая производительность, кг/с; Q – объёмная производительность, м3/с; H – напор, Дж/кг.
4. Коэффициент полезного действия (КПД) , который определяется как отношение полезной мощности к мощности приводного двигателя N:
.
КПД можно выразить следующим образом:
,
где: М – механический КПД, учитывающий механические потери в гидравлическом механизме (потери, обусловленные трением в подшипниках, сальниках и т.д.); О – объёмные потери (потери, обусловленные утечками жидкости через зазоры между неподвижными и вращающимися частями при наличии разности давлений); Г – гидравлические потери (потери, обусловленные внутренним трением в жидкости, вихреобразованием и отрывом потока от поверхностей проточной части).
Классификация насосов.
Насосы по принципу действия делятся на 2 группы:
1. Объёмные (насосы вытеснения), в которых жидкости сообщается в основном потенциальная энергия давления. Энергообмен и перемещение жидкости в этих насосах обеспечиваются периодическим изменением объёма рабочих камер с помощью вытеснителей, совершающих возвратно-поступательное движение (поршневые насосы) или вращательное движение (роторные насосы – шестерённые, винтовые, пластинчатые или шиберные, роторно-поршневые). Рабочая камера попеременно сообщается с всасывающим и нагнетательным патрубком.
Объёмные насосы применяются для перекачивания вязких жидкостей (масло, топливо).
2. Динамические насосы, в которых жидкости сообщается в основном кинетическая энергия. Рабочая камера в них постоянно сообщается и с всасывающим, и с нагнетательным патрубком. Динамические насосы в свою очередь подразделяют на лопастные и струйные.
Лопастные насосы делят на центробежные, осевые, вихревые и комбинированные. Их принцип действия основан на силовом взаимодействии лопастей рабочего колеса насоса с потоком жидкости.
В струйных насосах приращение удельной энергии перекачиваемой жидкости осуществляется в процессе энергообмена с другой жидкостью, обладающей большей энергией. К струйным насосам относятся эжекторы (применяются для откачивания жидкости) и инжекторы (применяются для подачи жидкости).
Схема эжектора изображена на рисунке.
Принцип действия эжектора следующий: рабочая (напорная) жидкость, выходя из сужающегося сопла 2 с большой скоростью, создаёт в смесительной камере 3 разрежение, засчёт которого туда по патрубку 1 подсасывается (эжектируется) перекачиваемая жидкость. В камере смешения перекачиваемая жидкость смешивается с потоком рабочей жидкости и увлекается им в цилиндрическое горло 4 и диффузор 5, в котором скорость падает, а давление повышается. Затем жидкость поступает в нагнетательный патрубок 6.
Классификация нагнетателей газообразных сред:
1. Вентиляторы – служат для перекачивания газообразных сред, имеют производительность до 40000 м3/ч и могут создавать напоры до 0,0085 МПа. У вентиляторов степень повышения давления (отношение давления на выходе к давлению на входе) π < 1,15. Для получения бОльших давлений применяются воздуходувки и компрессоры.
По принципу действия вентиляторы делятся на центробежные и осевые. В осевых вентиляторах рабочее колесо перемещает газ вдоль своей оси, они применяются при малых давлениях и больших подачах. В центробежных вентиляторах газ движется радиально от центра рабочего колеса к периферии. Благодаря использованию работы центробежных сил такие вентиляторы позволяют получить большее давление, чем осевые. Центробежные вентиляторы получили наиболее широкое распространение в судовых системах.
2. Воздуходувки – служат для нагнетания газа с давлением от 0,015 до 0,3 МПа.
Воздуходувки по принципу действия подразделяются, так же как и насосы, на две группы – объёмные (воздуходувки Рутса, Лисхольма, пластинчато-роторные) и динамические (турбовоздуходувки, вихревые воздуходувки).
3. Компрессоры – служат для создания высокого давления газов в ограниченном объёме, обеспечивают сжатие газа до давлений более 0,3 МПа. Так как сжатие газа до высоких давлений приводит к существенному увеличению его температуры, часто приходится использовать искусственное охлаждение полостей сжатия компрессоров.
Компрессоры по принципу действия подразделяются, так же как и насосы, на две группы – объёмные (поршневые, винтовые, спиральные и другие) и динамические (центробежные и осевые).