- •1. Цель и задачи курса «Методы оптимальных решений».
- •2. Классификация и специфика задач математического программирования (мп).
- •3. Основные этапы процесса моделирования задач мп.
- •4. Некоторые стандартные примеры математических моделей в мп (задача о рационе,
- •5. Основные понятия и факты, являющиеся базисными в теории оптимизации.
- •6. Теорема Каратеодори о выпуклой оболочке конечномерного пространства
- •7.Понятия целевая функция и ограничения задачи оптимизации
- •9. Математическая постановка задачи оптимизации.
- •10. Понятие компактности множества. Точная нижняя грань и точная верхняя грань.
- •11. Линейное программирование (лп). Специфика задач лп
- •13. Фундаментальное понятие базиса. Базисное, базисное допустимое и оптимальное базисное решение задачи лп.
- •14. Теорема, устанавливающая необходимое и достаточное условие существования базисного решения системы ограничений, безотносительно к способу их получения.
- •15. Геометрический смысл понятия базисного допустимого решения.
- •16. Критерий разрешимости задачи лп (с обоснованием).
- •17. Достаточное условие существования оптимального базисного решения (с обоснованием).
- •18. Неоднозначность терминологии лп: понятия матрица и вектор условий задачи лп, опорный план и оптимальный план задачи лп.
- •19. Идеи и принципиальные соображения, лежащие в основе конечных методов решения задач лп.
- •20. Элементарное преобразование базиса.
- •21. «Симплекс-таблица» и алгоритм ее построения.
- •22.Прямо и двойственно допустимые «симплекс-таблицы». Правило преобразование «симплекс-таблицы».
- •23. Достаточное условие оптимальности базисного решения задачи лп, основанное на характеристике «симплекс-таблицы».
- •24. Прямой «симплекс-метод» для решения задач лп и его обоснования.
- •25. Выбор столбца для ввода (вывода) в базис (из базиса) и неоднозначность данного выбора. Обоснования этих выборов.
- •26. Уточняющие правила, устраняющие возникающую неоднозначность при выборе ведущего столбца и/или ведущей строки: частичное или полное уточняющие правила Данцинга и Блэнда.
- •27. Рекуррентные соотношения алгоритма прямого «симплекс-метода» (связь между параметрами последовательных итераций).
- •28. Вопрос конечности алгоритма «симплекс-метода».
- •29. Проблема зацикливания алгоритма прямого «симплекс-метода».
- •30. Вырожденное базисное допустимое решение и вырожденная задача лп.
- •31. Возврат к пройденной угловой точке множества допустимых решений при преобразовании «симплекс-таблицы». Пути выхода из зацикливания в случае вырожденности задачи лп.
4. Некоторые стандартные примеры математических моделей в мп (задача о рационе,
транспортная задача, задача о выборе, задача о размещении).
Имеются три пункта поставки однородного груза А1, А2, А3 и пять пунктов В1, В2, В3, В4, В5 потребления этого груза. На пунктах А1, А2, А3 находится груз в количествах 90, 70, 110 тонн. В пункты В1, В2, В3, В4, В5 требуется доставить соответственно 50, 60, 50, 40, 70 тонн груза. Расстояния в сотнях километрах между пунктами поставки и потребления приведены в матрице-таблице D:
Найти такой план перевозок, при котором общие затраты будут минимальными.
УКАЗАНИЕ. 1) Считать стоимость перевозок пропорциональной количеству груза и расстоянию, на которое этот груз перевозится, т.е. для решения задачи достаточно минимизировать общий объем плана, выраженный в тонно-километрах. 2) для решения задачи использовать методы северо-западного угла и потенциалов.
Решение.
Составим математическую модель задачи:
Обозначим
-
количество груза, перевезенного от
поставщика i к потребителю j.
Становятся очевидными следующие ограничения (т.к. весь груз должен быть вывезен, и все потребности удовлетворены полностью):
При этом должна быть минимизирована целевая функция
Построим опорный план методом северо-западного угла:
Принцип заполнения таблицы состоит в том, что, начиная с крайней левой верхней ячейки (принцип северо-западного угла), количество грузов вписывается в таблицу так, чтобы потребности полностью удовлетворялись или груз полностью вывозился.
Построим
систему потенциалов.
-
потенциалы, соответствующие поставщикам,
-
потенциалы, соответствующие
потребителям.
Полагаем U1=0, а далее
Ui + Vj = dij для
занятых клеток таблицы.
U1
+ V1 = 9 V1 = 9
U1 + V2 = 1 V2 = 1
U2
+ V2 = 4 U2 = 3
U2 + V3 = 6 V3 = 3
U3
+ V4 = 5 U3 = 0 V4 = 5
U3 + V5 = 3
V5 = 3
Проверим
критерий оптимальности : Ui + Vj
dij для
свободных клеток.
U1 + V3 = 3>1 на 2 U1 + V4 = 5=5 U1 + V5 = 3<6 U2 + V1 = 12>6 на 6 U2 + V4 = 8=8 U2 + V5 = 6>5 на 1 U3 + V1 = 9>2 на 7 U3 + V2 = 1<9 U3 + V3 = 3=3
Из тех условий, где критерий не выполняется, выбираем то условие, где разница максимальна. Это – ячейка (3 , 1)
Перебросим в ячейку (3 , 1) 50 единиц груза из ячейки (1 , 1). Чтобы компенсировать недостаток в первой строке, перебросим те же 50 единиц груза из ячейки (2 , 3) в ячейку (1 , 3). Теперь чтобы компенсировать недостаток в строке 2, перебросим из ячейки (3 , 5) 50 единиц в ячейку (2 , 5). Таким образом, образовался цикл, показанный в таблице пунктиром.
5. Основные понятия и факты, являющиеся базисными в теории оптимизации.
Оптимизация – это выбор наилучшего решения. Математическая теория оптимизации включает в себя фундаментальные результаты и численные методы, позволяющие находить наилучший вариант из множества возможных альтернатив без их полного перебора и сравнения. Для того чтобы использовать результаты и вычислительные процедуры теории оптимизации на практике, необходимо, прежде всего, сформулировать рассматриваемую задачу на математическом языке, т.е. построить математическую модель объекта оптимизации. Построение математических моделей оптимизации можно условно разбить на следующие основные этапы: Определение границ объекта оптимизации. Необходимость этого этапа диктуется невозможностью учета и исчерпывающего описания всех сторон большинства реальных систем. Выделив главные переменные, параметры и ограничения, следует приближенно представить систему как некоторую изолированную часть реального мира и упростить ее внутреннюю структуру. Может оказаться, что первоначальные границы объекта оптимизации выбраны неудачно. Тогда в одних случаях границы системы следует расширить, а в других – сузить.
Выбор управляемых переменных. На этом этапе математического моделирования необходимо провести различие между теми величинами, значения которых можно варьировать и выбирать с целью достижения наилучшего результата (управляемыми переменными), и величинами, которые фиксированы или определяются внешними факторами. Определение тех значений управляемых переменных, которым соответствует наилучшая (оптимальная) ситуация, и представляет собой задачу оптимизации.
Формулировка математической задачи оптимизации. Объединяя результаты предыдущих этапов построения математической модели, ее записывают в виде математической задачи оптимизации, включающей построенную целевую функцию и найденные ограничения на управляемые переменные. При записи математических задач оптимизации в общем виде обычно используется следующая символика:
f(xi) ®min (max), хiО U
где f(xi) – целевая функция, а U – допустимое множество, заданное ограничениями на управляемые переменные. Значение параметров f(xi) ®min (max) при которых достигается min (max), называется оптимальным решением. Поиски оптимальных решений привели к созданию специальных математических методов и уже в 18 веке были заложены математические основы оптимизации (вариационное исчисление, численные методы и др). Однако до второй половины 20 века методы оптимизации во многих областях науки и техники применялись очень редко, поскольку практическое использование математических методов оптимизации требовало огромной вычислительной работы, которую без ЭВМ реализовать было крайне трудно, а в ряде случаев - невозможно. Особенно большие трудности возникали при решении задач оптимизации процессов в химической технологии из-за большого числа параметров и их сложной взаимосвязи между собой. При наличии ЭВМ задача заметно упрощается. Постановка задачи оптимизации предполагает существование конкурирующих свойств процесса, например: - количество продукции - "расход сырья" - количество продукции - "качество продукции" Выбор компромисного варианта для указанных свойств и представляет собой процедуру решения оптимизационной задачи.
При постановке задачи оптимизации необходимо: 1.Наличие объекта оптимизации и цели оптимизации. При этом формулировка каждой задачи оптимизации должна требовать экстремального значения лишь одной величины, т.е. одновременно системе не должно приписываться два и более критериев оптимизации, т.к. практически всегда экстремум одного критерия не соответствует экстремуму другого. Типичный пример неправильной постановки задачи оптимизации: "Получить максимальную производительность при минимальной себестоимости". Ошибка заключается в том, что ставится задача поиска оптимума 2-х величин, противоречащих друг другу по своей сути. Правильная постановка задачи могла быть следующая: а) получить максимальную производительность при заданной себестоимости; б) получить минимальную себестоимость при заданной производительности; В первом случае критерий оптимизации - производительность, а во втором - себестоимость. 2. Наличие ресурсов оптимизации, под которыми понимают возможность выбора значений некоторых параметров оптимизируемого объекта. Объект должен обладать определенными степенями свободы - управляющими воздействиями. 3. Возможность количественной оценки оптимизируемой величины, поскольку только в этом случае можно сравнивать эффекты от выбора тех или иных управляющих воздействий. 4. Учет ограничений.
