
- •6.Свойства ковалентной связи. Геометрия и полярность молекул.
- •7.Ковалентная связь и ее объяснения с позиции метода мо.
- •8. Ионная химическая связь. Ионные кристаллы.
- •9. Металлическая связь. Металлические кристаллы.
- •10. Молекулярные кристаллы. Водородные связи и межмолекулярные взаимодействия.
- •11. Атомные кристаллы.
- •12. Зонная теория проводимости кристаллов.
- •13. Полупроводники.
- •14. Количественные характеристики чистого вещества: экспериментальный способ их определения и расчета.
- •15. Растворы. Способы выражения концентрации раствора: массовая доля, мольная доля, молярная концентрация.
- •16. Молярная концентрация эквивалента. Эквивалент. Фактор эквивалентности и особенности его расчета. Молярная масса эквивалента.
- •17. Фазовые переходы. Фазовые равновесия. Фазовые диаграммы и их анализ.
- •18.Коллегативные свойства растворов.
- •19.Термохимическая теплота. Тепловой эффект химической реакции и фазового перехода.
- •20. Закон Гесса и его следствия.
- •21. Зависимость теплового эффекта от температуры. Уравнение Кирхгоффа
- •22. Экспериментальное определение теплового эффекта химической реакции.
- •23. Основные понятия химической кинетики: Скорость химической реакции, молекулярность, простая и сложная с точки зрения химической кинетики реакции. Основной закон (постулат) химической кинетики.
- •24.Влияние температуры на скорость химической реакции
- •25. Катализ и его особенности
- •26. Экспериментальный способ определения порядка и константы скорости реакции.
- •27. Электролиты. Теория электролитической диссоциации с. Аррениуса.
- •28.Теория сильных электролитов. Активность. Коэффициент активности. Зависимость коэффициента активности от ионной силы раствора.
- •29. Слабые электролиты. Константа кислотности и основности. Закон разбалвения Освальда.
- •30. Вода-слабый электролит. Ионное произведение воды. PH. POh
- •31.Эксперементальное определение водородного показателя
- •32.Расчет рН в растворе сильного электролита.
- •33.Расчет рН в растворе слабого электролита.
- •34.Гетерогенные равновесия в растворе электролита. Произведение растворимости.
- •35. Реакции ионного обмена и их применение в качественном анализе
- •36.Гидролиз солей.
- •37.Кислотно-основное титрование. Определение концентрации раствора на основе метода титрования.
- •38.Кривые титрования. Выбор индикатора по кривой титрования.
- •39.Степень окисления.Окислительно-восстановительные реакции.
- •40.Влияние среды на протекания окислительно-восстановительных процессов (на примере иона MnO4)
18.Коллегативные свойства растворов.
Коллигативные свойства растворов — это те свойства, которые при данных условиях оказываются равными и независимыми от химической природы растворённого вещества; свойства растворов, которые зависят лишь от количества кинетических единиц и от их теплового движения.Пар, находящийся в равновесии с жидкостью, называют насыщенным. Давление такого пара над чистым растворителем (p0) называют давлением или упругостью насыщенного пара чистого растворителя.
19.Термохимическая теплота. Тепловой эффект химической реакции и фазового перехода.
Термохи́мия — раздел химической термодинамики, в задачу которой входит определение и изучение тепловых эффектов реакций, а также установление их взаимосвязей с различными физико-химическими параметрами. Ещё одной из задач термохимии является измерение теплоёмкостей веществ и установление их теплотфазовых переходов.
Тепловой эффект химической реакции или изменение энтальпии системы вследствие протекания химической реакции — отнесенное к изменению химической переменной количество теплоты, полученное системой, в которой прошла химическая реакция и продукты реакции приняли температуру реагентов. Чтобы тепловой эффект являлся величиной, зависящей только от характера протекающей химической реакции, необходимо соблюдение следующих условий:
Реакция должна протекать либо при постоянном объёме Qv(изохорный процесс), либо при постоянном давлении Qp(изобарный процесс).
В системе не совершается никакой работы, кроме возможной при P = const работы расширения.
Если реакцию проводят при стандартных условиях при Т = 298,15 К = 25 ˚С и Р = 1 атм = 101325 Па, тепловой эффект называют стандартным тепловым эффектом реакции или стандартной энтальпией реакции ΔHrO. В термохимии стандартный тепловой эффект реакции рассчитывают с помощью стандартных энтальпий образования.
20. Закон Гесса и его следствия.
Закон Гесса — основной закон термохимии, который формулируется следующим образом:
Тепловой эффект химической реакции, проводимой в изобарно-изотермических или изохорно-изотермических условиях, зависит только от вида и состояния исходных веществ и продуктов реакции и не зависит от пути её протекания.
Следствия. Тепловой эффект прямой реакции равен по величине и противоположен по знаку тепловому эффекту обратной реакции (закон Лавуазье-Лапласа). Тепловой эффект химической реакции равен разности сумм теплот образования (ΔHf) продуктов реакции и исходных веществ, умноженных на стехиометрические коэффициенты (ν):
Тепловой эффект химической реакции равен разности сумм теплот сгорания (ΔHc) исходных веществ и продуктов реакции, умноженных на стехиометрические коэффициенты (ν):
Таким образом, пользуясь табличными значениями теплот образования или сгорания веществ, можно рассчитать теплоту реакции, не прибегая к эксперименту. Табличные величины теплот образования и сгорания веществ обычно относятся к т. н. стандартным условиям. Для расчёта теплоты процесса, протекающего при иных условиях, необходимо использовать и другие законы термохимии, например, закон Кирхгофа, описывающий зависимость теплового эффекта реакции от температуры. Если начальное и конечное состояния химической реакции (реакций) совпадают, то её (их) тепловой эффект равен нулю.