
- •6.Свойства ковалентной связи. Геометрия и полярность молекул.
- •7.Ковалентная связь и ее объяснения с позиции метода мо.
- •8. Ионная химическая связь. Ионные кристаллы.
- •9. Металлическая связь. Металлические кристаллы.
- •10. Молекулярные кристаллы. Водородные связи и межмолекулярные взаимодействия.
- •11. Атомные кристаллы.
- •12. Зонная теория проводимости кристаллов.
- •13. Полупроводники.
- •14. Количественные характеристики чистого вещества: экспериментальный способ их определения и расчета.
- •15. Растворы. Способы выражения концентрации раствора: массовая доля, мольная доля, молярная концентрация.
- •16. Молярная концентрация эквивалента. Эквивалент. Фактор эквивалентности и особенности его расчета. Молярная масса эквивалента.
- •17. Фазовые переходы. Фазовые равновесия. Фазовые диаграммы и их анализ.
- •18.Коллегативные свойства растворов.
- •19.Термохимическая теплота. Тепловой эффект химической реакции и фазового перехода.
- •20. Закон Гесса и его следствия.
- •21. Зависимость теплового эффекта от температуры. Уравнение Кирхгоффа
- •22. Экспериментальное определение теплового эффекта химической реакции.
- •23. Основные понятия химической кинетики: Скорость химической реакции, молекулярность, простая и сложная с точки зрения химической кинетики реакции. Основной закон (постулат) химической кинетики.
- •24.Влияние температуры на скорость химической реакции
- •25. Катализ и его особенности
- •26. Экспериментальный способ определения порядка и константы скорости реакции.
- •27. Электролиты. Теория электролитической диссоциации с. Аррениуса.
- •28.Теория сильных электролитов. Активность. Коэффициент активности. Зависимость коэффициента активности от ионной силы раствора.
- •29. Слабые электролиты. Константа кислотности и основности. Закон разбалвения Освальда.
- •30. Вода-слабый электролит. Ионное произведение воды. PH. POh
- •31.Эксперементальное определение водородного показателя
- •32.Расчет рН в растворе сильного электролита.
- •33.Расчет рН в растворе слабого электролита.
- •34.Гетерогенные равновесия в растворе электролита. Произведение растворимости.
- •35. Реакции ионного обмена и их применение в качественном анализе
- •36.Гидролиз солей.
- •37.Кислотно-основное титрование. Определение концентрации раствора на основе метода титрования.
- •38.Кривые титрования. Выбор индикатора по кривой титрования.
- •39.Степень окисления.Окислительно-восстановительные реакции.
- •40.Влияние среды на протекания окислительно-восстановительных процессов (на примере иона MnO4)
16. Молярная концентрация эквивалента. Эквивалент. Фактор эквивалентности и особенности его расчета. Молярная масса эквивалента.
Молярная
концентрация эквивалентов вещества
определяется
числом эквивалентов растворенного
вещества в единице объема раствора,
моль∙литр–1: гдеnЭ (B)
– количество вещества эквивалентов,
μЭ –
молярная масса эквивалента.
Эквивалент вещества или Эквивалент — это реальная или условная частица, которая может присоединять, высвобождать или другим способом быть эквивалентна катиону водорода в ионообменных реакциях или электрону в окислительно-восстановительных реакциях
Фактор
эквивалентности
Отношение эквивалентной молярной массы
к его собственной молярной массе
называется фактором
эквивалентности(обозначается
обычно как ).
Число эквивалентности
Число
эквивалентности представляет
собой небольшое положительное целое
число, равное числу эквивалентов
некоторого вещества, содержащихся в 1
моль этого вещества. Фактор
эквивалентности
связан
с числом эквивалентности следующим
соотношением:
Например,
в реакции:
Эквивалентом
является мнимая частица
.
Число
естьфактор
эквивалентности,
в
данном случае равно
.
Молярная
масса эквивалентов
обычно обозначается как
или
.
Отношение эквивалентной молярной массы
вещества к его собственно молярной
массе называетсяфактором
эквивалентности (обозначается
обычно как
).Молярная
масса эквивалентов вещества —
масса одного моля эквивалентов,
равная произведению фактора эквивалентности
на молярную
массу этого вещества.
17. Фазовые переходы. Фазовые равновесия. Фазовые диаграммы и их анализ.
Фа́зовый перехо́д (фазовое превращение) в термодинамике — переход вещества из одной термодинамической фазы в другую при изменении внешних условий. С точки зрения движения системы по фазовой диаграмме при изменении её интенсивных параметров (температуры, давления и т. п.), фазовый переход происходит, когда система пересекает линию, разделяющую две фазы. Поскольку разные термодинамические фазы описываются различными уравнениями состояния, всегда можно найти величину, которая скачкообразно меняется при фазовом переходе.Поскольку разделение на термодинамические фазы — более мелкая классификация состояний, чем разделение по агрегатным состояниям вещества, то далеко не каждый фазовый переход сопровождается сменой агрегатного состояния. Однако любая смена агрегатного состояния есть фазовый переход.Наиболее часто рассматриваются фазовые переходы при изменении температуры, но при постоянном давлении (как правило равном 1 атмосфере). Именно поэтому часто употребляют термины «точка» (а не линия) фазового перехода, температура плавления и т. д. Разумеется, фазовый переход может происходить и при изменении давления, и при постоянных температуре и давлении, но и при изменении концентрации компонентов (например, появление кристалликов соли в растворе, который достиг насыщения).
Равнове́сие фаз в термодинамике — состояние, при котором фазы в термодинамической системе находятся в состоянии теплового, механического и химического равновесия. Типы фазовых равновесий: Тепловое равновесие означает, что все фазы вещества в системе имеют одинаковую температуру. Механическое равновесие означает равенство давлений по разные стороны границы раздела соприкасающихся фаз. Строго говоря, в реальных системах эти давления равны лишь приближенно, разность давлений создается поверхностным натяжением. Химическое равновесие выражается в равенстве химических потенциалов всех фаз вещества. Фа́зовая диагра́мма (диаграмма состоя́ния) — графическое отображение равновесного состояния бесконечной физико-химической системы при условиях, отвечающих координатам рассматриваемой точки на диаграмме. Анализ фазовых диаграмм. Обычными координатами для построения фазовой диаграммы являются термодинамические параметры — температура и давление — и состав системы (в мольных или массовых процентах).В общем случае количество координат превышает число компонентов системы на единицу Для конденсированных систем зачастую не учитывают изменение фазовых равновесий за счёт давления, в этом случае число измерений диаграммы равно числу компонентов (диаграмма конденсированной двухкомпонентной системы двумерна, трёхкомпонентной — трёхмерна и т. п.) Сложные фазовые диаграммы в печатных изданиях изображают в виде сечений или проекций. Согласно правилу фаз, на двумерной диаграмме однофазная область описывается полем, двухфазная — линией (на p-T диаграммах) или набором параллельных линий конод, для которых фиксированы составы равновесных фаз (на диаграммах с участием состава), трёхфазная — точкой (на p-T диаграммах) или горизонталью (на T-x или p-x диаграммах).