Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
КР по Математике 2.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
3.53 Mб
Скачать
  1. Линейное неоднородное дифференциальное уравнение второго порядка с постоянными ко­эффициентами и специальной правой частью. Метод неопределенных коэффициентов.

Этот тип уравнений характеризуется наличием правой части, то есть имеет вид:

. (22)

Можно доказать, что общее решение уравнения (22) представляется в виде:

, (23)

где общее решение уравнения (22), а частное решение уравнения (22). Иными словами, общее решение линейного неоднородного уравнения есть сумма общего решения линейного однородного уравнения и одного из частных решений линейного неоднородного уравнения.

Отметим еще одно важное свойство решений линейных дифференциальных уравнений – принцип суперпозиции решений. Пусть правая часть линейного неоднородного дифференциального уравнения представляется в виде суммы двух (или более) функций:

. (24)

Тогда решение этого уравнения может быть представлено в виде , где и решения дифференциальных уравнений: и соответственно. Это означает, что, разбив правую часть линейного неоднородного дифференциального уравнения на сумму двух слагаемых, можно свести его решение к решению двух более простых дифференциальных уравнений.

Заметим, что при формулировке принципа суперпозиции решений не требуется постоянство коэффициентов. Кроме того, этот принцип справедлив и для дифференциальных уравнений более высокого порядка.

Рассмотрим линейное неоднородное дифференциальное уравнение второго порядка с постоянными ко­эффициентами (22), в котором правая часть имеет следующий вид:

,

Где , постоянные числа, , многочлены порядка и .

Такие уравнения называют уравнениями со специальной правой частью, и для нахождения их частного решения можно применить метод Эйлера. Согласно этому методу, частное решение ищется в следующем виде:

. (25)

В правой части равенства (25) , а и многочлены степени с неопределенными коэффициентами.

Степень множителя определяется по следующему правилу: если контрольное число (комплексное при не совпадает ни с одним из корней характеристического уравнения (23), то . Если контрольное число совпадает с одним из корней характеристического уравнения, то . Наконец, если контрольное число совпадает с корнем характеристического уравнения и этот корень кратный, то . Очевидно, что последний случай возможен только при , так как кратный корень может быть только вещественным (действительным).

Для определения неопределенных коэффициентов в многочленах и следует подставить выражение (25) в уравнение (22), предварительно найдя его производные и . Неопределенные коэффициенты находятся из системы линейных алгебраических уравнений, к которым сведется уравнение (22) после подстановки в него выражения (25).

Пример 12. Решить дифференциальное уравнение:

.

Решение: Характеристическое уравнение для однородного дифференциального уравнения имеет вид: . Его корни . Общее решение однородного уравнения записывается в форме: , где и произвольные постоянные.

Будем искать частное решение неоднородного уравнения в виде (25). По условиям примера Контрольное число равно единице и не совпадает с корнями характеристического уравнения. Поэтому Таким образом, формула (25) дает: . Найдем производные :

Подставим эти выражения в дифференциальное уравнение:

.

Сокращая обе части уравнения на и приводя подобные, получаем:

.

Последнее равенство должно выполняться для произвольных значений , что возможно лишь при выполнении следующих условий:

Решая систему уравнений, находим:

Следовательно, и общее решение рассматриваемого дифференциального уравнения принимает вид:

.

Пример 13. Найти общее решение дифференциального уравнения:

.

Решение: Характеристическое уравнение для однородного дифференциального уравнения имеет два комплексно-сопряженных корня: Общее решение однородного уравнения записывается в виде: , где и произвольные постоянные.

Найдем частное решение неоднородного уравнения. Заметим, что правая часть уравнения – сумма двух слагаемых, каждое из которых может быть представлено в виде (25). Поэтому, в соответствии с принципом суперпозиции решений, частное решение неоднородного уравнения будем искать в виде:

.

Найдем производные функции :

.

Подставим эти выражения в исходное уравнение:

.

Выполнение этого уравнения при произвольных значениях возможно только в том случае, когда коэффициенты при функциях в левой и правой частях уравнения будут одинаковы. Это условие приводит к системе уравнений:

Ее решение: ; ; ; ; .

В окончательном виде получаем общее решение неоднородного дифференциального уравнения:

.