Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
му_пз_ПИТКС.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
3.94 Mб
Скачать

3. Пример решения задачи

Определить сеть минимальной стоимости, соединяющую терминал S1, S2, S3 с центральным компьютером S0.

Стоимости линий Cij приведены в таблице 4, пропускные способности всех линий приняты одинаковыми, rij=5.

Таблица 4 - Стоимости соединений узлов сети

S0

S1

S2

S3

S1

1

-

2

4

S2

4

3

-

1

S3

3

1

5

-


а0=-8; а1=2; а2=3; а3=3.

Шаг 0. Подсчитаем множество пометок по формуле:

tij= Cij- Cio (2.2)

t12= C12- C10=2-1=1

t13= C13- C10=4-1=3

t21= C21- C20=3-4=-1;

t23= C23- C20=1-4=-3;

t31= C31- C30=1-3=-2;

t32= C32- C30=5-3=2

Итерация 1.

Шаг 1. Определяем наименьшую пометку в множестве (3.2)

{ tij}= t23=-3

Это означает, что нужно проверить возможность соединения вершин S2 и S3 (S2=>S3).

Шаг 2. Проверяем величину интенсивности в вершине S2

а2=3>0; а2=3<r=5.

А2+ а3=3+3>r- следовательно соединение S2=>S3 невозможно, полагаем t23= и переходим к выполнению итерации 2.

Итерация 2.

Шаг 1. Определяем

{tij}= t31=-2, что соответствует соединению S3 и S1.

Шаг 2. а3=3>0 а3+ а1=3+2=5=r, следовательно, это соединение возможно.

Шаг 3. Подсчитаем:

  • затраты F=C31=1;

  • новые интенсивности терминалов S3 и S1 a31=0 а11=2+3=5

  • пропускную способность r131=5-3=2.

Положим t31= .

Рисунок 6 – Соединение узлов S3 и S1

Переходим к шагу 1 итерации 3.

Итерация 3.

Шаг 1. Определим {tij} = t21.

Шаг 2. Проверим:

a2=3>0; а2<r=5; а21= 3+5>r=5, следовательно, это соединение невозможно, положим t21= и переходим к итерации 4.

Итерация 4.

Шаг 1. {tij}= t12>0, значит все tij – положительны, переходим к шагу 4 .

Шаг 4. Определим вершины с положительной интенсивностью и соединим их с S0.

A1=5<r10 a111=0 а10=-8+5=-3 F11=F+C10=1+1=2.

А2=3<r20 a12=0 а110=-3+3=0 F111=F11+C20=2+4=6.

A13=0

Следовательно, расчет окончен, оптимальная схема приведена на рисунке 7. Затраты равны 6 ед.

Рисунок 7 – Оптимальная схема сети телекоммуникаций

4. Задание к практической работе

В приложении I даны варианты заданий:

а) Используя исходные данные решить вручную задачу синтеза методом Ежи-Вильямса.

б) Разработать блок-схему алгоритма.

5. Контрольные вопросы

1. Какая сеть называется централизованной?

2. Что понимают под иерархичностью сети?

3. Что понимают под конфигурацией сети?

4. Какой принцип лежит в основе решения задачи построения телекоммуникационной сети методом Ежи-Вильямса?

5. Что понимают под пропускной способностью канала связи?

6. Какие два условия необходимо проверить для возможности соединения двух узлов?

7. Какие факторы влияют на выбор топологии сети?

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]