- •1. Классификация основных процессов и аппаратов по способу создания движущей силы
- •Массообменные процессы
- •Гидромеханические процессы связаны с переработкой суспензий
- •Механические процессы
- •2. Основные признаки массообменных процессов
- •3. Основное уравнение массопередачи
- •4. Материальный баланс массообменного процесса
- •5. Рабочая линия
- •6. Графическое представление массообменного процессса.
- •7. Движущая сила массообменных процессов
- •8. Средняя интегральная движущая сила
- •9. Средняя логарифмическая движущая сила
- •10. Число единиц переноса (чеп)
- •12. Теоретическая тарелка, вэтт
- •13. Правило фаз гиббса
- •14. Способы выражения составов фаз
- •15. Насыщенные и ненасыщенные пары
- •16. Классификация бинарных смесей жидкостей
- •17. Основные законы фазового равновесия
- •18 19 Равновесие идеальных бинарных смесей, изотерма паровой и жидкой фазы
- •20. Графический метод расчета равновесных составов фаз
- •21. Кривая равновесия фаз
- •22. Изобарные температурные кривые
- •23. Энтальпийная (тепловая) диаграмма
- •24. Равновесие бинарных систем, частично отклоняющихся от закона рауля
- •25. Равновесие бинарных систем, образующих азеотропные смеси
- •26. Равновесие частично растворимых жидкостей
- •27. Равновесие взаимно нерастворимых жидкостей
- •28. Способы перегонки жидкостей
- •Постепенное испарение
- •29. Расчет процесса ои. Материальный и тепловой баланс ои.
- •30. Постепенное испарение
- •Уравнение Рейлея
- •31. Постепенная конденсация
- •32. Многократное испарение
- •Многократная конденсация
- •34. Сущность процесса ректификации
- •35. Принципиальное устройство ректификационной колонны
- •36. Материальный баланс колонны
- •37. Расчет минимальных флегмовых и паровых чисел
- •При min орошении рабочие линии dLиWm пересекутся с линией равновесия в одной точке.
- •38. Уравнение рабочей линии для верхней части колонны
- •39. Уравнение рабочей линии для нижней части колонны
- •40. Внутреннее и внешнее флегмовое число
- •41. Тепловой баланс ректификационной колонны
- •42. Тепловой баланс верхней части колонны
- •43. Тепловой баланс нижней части колонны
- •47 Графическое определение числа тт на диаграмме х-у
- •48 Графическое определение числа тт при помощи энтальпийной диаграммы и изобарных температурных кривых
- •49.Способы создания орошения в колонне
- •50 Парциальный конденсатор
- •51Холодное(острое) испаряющееся орошение
- •52Циркуляционное орошение
- •50. Парциальный конденсатор
- •51. Холодное («острое») испаряющееся орошение
- •52. Верхнее циркуляционное (неиспаряющееся) орошение
- •53. Способы подвода тепла в низ колонны
- •54. Выбор давления при ректификации
- •55. Особенности работы колонн с вводом водяного пара
- •56. Расчет процесса ои многокомпонентных смесей
- •57,60 Расчет ректификации многокомпонентных смесей в режиме полного орошения. Уравнение Фенске
- •58,59 Расчет ректификации многокомпонентных смесей в режиме минимального орошения. Уравнение Андервуда
- •61Определение основных размеров колонны
43. Тепловой баланс нижней части колонны
;
;
-уравнение
прямой, проходящей через 3 точки
,
,
,
Уравнение рабочей лини связывает составы и энтальпии встречных потоков флегмы и паров.
При
заданном составе остатка
положение полюса Р’ зависит от тепла
.
При ↑
→Р=
,
а при
→
=
.
т.g и G характеризуют составы и энтальпии встречных неравновесных потоков, относящихся к одному произвольному сечению. Каждому сечению соответствует своя рабочая линия.
Полюс соответствует режиму минимального орошения → ЧТТ → , а пары, поднимающиеся из нижней части колонны, находятся в равновесии с жидкостью, стекающей в нижнюю часть колонны.
44Построение рабочих линий на диаграмме
Х-У при помощи энтальпийной диаграммы
45 Режим минимального орошения
;
-нормальная ректификация.
-наступает момент мin орошения.
; D( , ) L ( , )
W
(
,
)
M(
,
,
y=1)
46.Режим полного орошения
При бесконечном флегмовом и паровом числах рабочие линии обеих частей колонны сливаются с диагональю диаграммы х-у. В этом случае, как следует из уравнения рабочей линии, составы потоков паров и жидкости, являющиеся встречными на одном уровне, для любого сечения колонны будут равны: хn+1=yn, а число тарелок будет мин и равным Nмин.
Такой режим работы колонны можно представить двояко:
1.колонна работает с отбором ректификата D, остатка W и с подачей сырья F=D+W при потоках флегмы g и паров G, стремящихся к бесконечности(режим бесконечной флегмы).
2.колонна работает без отбора продуктов: D=0, W=0 и F=D+W=0, но с заданными подводом тепла QB в кипятильнике и с отводом тепла Qd в конденсаторе,т.е. в этом случае встречные потоки пара и жидкости равны и определяются теплоподводом в кипятильник(режим полного орошения).
В первом случае колонна должна иметь бесконечно большое поперечное сечение, во втором поперечное сечение аппарата определяется потоками паров и флегмы.
Пар состава yw*, уходящий из кипятильника, находится в равновесии с жид остатком состава xw, те они связаны урав. равновесия:
.
для
любых двух смежных тарелок справедливо
хn+1=ynи
поэтому:
.
47 Графическое определение числа тт на диаграмме х-у
48 Графическое определение числа тт при помощи энтальпийной диаграммы и изобарных температурных кривых
Абсцисса yD определяет положение точки 1 на энтальпийной диаграмме (отвечает энтальпии паров ректификата H,D) и точки 2 на кривой конденсации (определяет температуру паров ректификата tD). Концентрация жидкости x'D, стекающей из парциального конденсатора и находящейся в равновесии с парами ректификата, определится абсциссой точки 3, находящейся на пересечении ординаты tD с кривой испарения. Линия 2—3 отвечает коноде при температуре tD. Точке 3 на энтальпийной диаграмме соответствует точка 4, определяющая коноду 1—4. Соединив точку 4 с полюсом Р, получим рабочую линию, определяющую составы потоков пара и жидкости над верхней тарелкой. Пересечение рабочей линии Р—4 с кривой энтальпий паров в точке 5 определяет состав паров уNК, поднимающихся с верхней тарелки концентрационной части колонны. Точке 5 на кривой конденсации соответствует точка 6, ордината которой определяет температуру этих паров. Конода 6—7 дает точку 7, абсцисса которой определяет состав жидкости, стекающей с верхней тарелки. Состав этой жидкости, перенесенный на энтальпийную диаграмму в точку 8, дает положение коноды 5—8 и рабочую линию Р—8. Пересечение этой рабочей линии в точке 9 с кривой энтальпий паров определяет состав паров yNк-1, под верхней тарелкой.Продолжив соответствующие построения, получим наконец состав паров ут, поступающих на нижнюю тарелку концентрационной части колонны (абсцисса точки 13), и состав жидкости х1, стекающей в секцию питания колонны (абсцисса точки 12). Число конод, полученных при таком построении, и определяет число теоретических тарелок; в данном случае оно равно 3. Конода 2—3 (или 1—4) отвечает идеальному контакту, обеспечиваемому работой парциального конденсатора.
Определение числа теоретических тарелок в нижней части колонны можно начать с точки V. Абсцисса этой точки дает точку V на линии энтальпий жидкости и точку 2', соответствующую температуре остатка, отбираемого из низа колонны.
Проведя коноду 2' — 3', получим точку 3' на кривой конденсации, которая определяет положение коноды V — 4' на энтальпийной диаграмме. Абсцисса точки 3' (или 4') определяет состав паров y'w, покидающих кипятильник и находящихся в равновесии с остатком состава xw.
Проведя через точку 4' и полюс Р рабочую линию, получим точку 5' пересечения рабочей линии с кривой энтальпий жидкости. Абсцисса точки 5' определяет состав жидкости х,., стекающей с нижней тарелки отгонной части колонны. На кривой конденсации для абсциссы хг получим точку 6', ордината которой определяет положение коноды 6' — Т на изобарных температурных кривых. Абсцисса точки 7', находящейся на кривой конденсации, дает состав паров у1, уходящих с нижней тарелки отгонной части колонны. Абсцисса точки 7' определяет точку 8' на энтальпийной диаграмме, которая отвечает коноде 5' — 8'. Проведя рабочую линию Р' — 8' до пересечения с кривой энтальпий жидкой фазы, получим точку 9', абсцисса которой дает состав жидкости х2-, стекающей со второй, считая снизу, тарелки
отгонной части колонны.
Подобное построение продолжается до тех пор, пока не будет достигнут требуемый состав жидкости хт и состав пара yN0 над верхней тарелкой нижней части колонны. В данном примере это точки соответственно 9' и 8'.
Число построенных конод определяет число теоретических тарелок в нижней части колонны (в данном случае оно равно 2). Конода 2' — 3' (или 1' — 4') характеризует работу кипятильника.
Из приведенного графического построения числа тарелок по энтальпийной диаграмме следует, что при перемещении вверх полюса Р (Od/D увеличивается, флегмовое число R также увеличивается) число теоретических тарелок в концентрационной части колонны уменьшается. При перемещении полюса Р вниз необходимое число тарелок увеличивается.
Перемещение полюса Р’ вниз свидетельствует об увеличении количества тепла Ов/W, ПОДВОДИМОГО В КИПЯТИЛЬНИК, а следовательно, и потока паров. Это приводит к уменьшению числа теоретических тарелок. Перемещение полюса Р' вверх связано с уменьшением количества подводимого в кипятильник тепла и уменьшением потока паров орошения. При этом число теоретических тарелок в нижней части колонны увеличивается.
