- •Вопрос 1. Опасности: понятие и классификация . Источники опасностей , характерные для рб
- •Вопрос 2. Чрезвычайные ситуации . Их классификация.
- •2. По ведомственной принадлежности различают чс:
- •3. По масштабу возможных последствий:
- •Вопрос 3. Чс техногенного характера . Аварии и катастрофы на автомобильном и железнодорожном транспорте .
- •Вопрос 4. Способы выживания людей при пожарах и взрывах на объектах хозяйствования
- •Вопрос 5. Поражающие факторы ядерного взрыва , защита от них
- •Вопрос 6. Понятие о сильнодействующих ядовитых веществах (сдяв)и химическом оружии (хо). Их поражающее действие ,симптомы поражения , первая помощь пострадавшим
- •Вопрос 9. Характеристика стихийных бедствий ,характерных для рб: метеорологические явления , природные пожары
- •Вопрос 10. Чс биологического характера . Понятие об эпидемии, пандемии , эпизоотии и эпифитотии.
- •Вопрос 11. Классификация возбудителей инфекционных заболеваний : патогенные и условно патогенные микроорганизмы.
- •Вопрос 15. Основные принципы и способы защиты населения и территории от чс Основные принципы по защите населения:
- •Основные мероприятия по обеспечению защиты населения в чрезвычайных ситуациях:
- •Вопрос 20. Медицинские средства индивидуальной защиты : аптечка индивидуальная (аи-2), индивидуальный противохимический пакет (иип-8,10,11), пакет индивидуальный перевязочный (ппи), их назначение.
- •Вопрос 22. Государственная система по предупреждению и ликвидации чрезвычайных ситуаций (гсчс). Задачи и структура.
- •Вопрос 23. Министерство по чрезвычайным ситуациям (мчс). Его роль и задачи в государственной системе по защите населения
- •Вопрос 25. Организация обучения населения по защите при чс в системе гражданской обороны.
- •Вопрос 26. Порядок оповещения населения о чрезвычайных ситуациях.
- •Вопрос 28. Современное представление о строении атома
- •Вопрос 29. Понятие об изотопах, их применение в науке , промышленности и медицине.
- •Вопрос 30. Понятие об радиоактивности . Характеристика ионизирующих излучений и защита от них.
- •Вопрос 31. Период полураспада радиоактивного изотопа . Единицы измерения радиоактивности .
- •Вопрос 33. Основные способы обнаружения ионизирующих излучений.
- •Вопрос 34. Принципы устройства и работы дозиметрических приборов.
- •Вопрос 35. Классификация дозиметрических приборов.
- •Вопрос 36. Понятие о радиоактивном фоне , уровне радиации на местности .
- •Вопрос 37. Общие закономерности биологического действия ионизирующих излучений.
- •Вопрос 39. Радиочувствительность тканей и органов человека .
- •Вопрос 42. Основные симптомы острой лучевой болезни 3-й степени тяжести
- •Вопрос 45. Методы, ускоряющие выведение радионуклидов из организма
- •Вопрос 46. Значение полноценного питания людей при проживании на территории , загрязненной радионуклидами.
- •Вопрос 53. Урбанизация и здоровье населения . Проблемы рекреации и занятий физической культурой и спортом в урбанизированных экосистемах.
- •Вопрос 54. Понятие о биосфере. Состав и структура биосферы.
- •Вопрос 55. Определение экосистемы . Биотическая и абиотическая структура экосистемы.
- •Вопрос 56. Природные ресурсы биосферы . Возобновляемые и не возобновляемые , исчерпаемые и неисчерпаемые .
- •Вопрос 57. Проблема ресурсов продуктов питания и воды .
- •Вопрос 59. Демографическая ситуация в мире и Республике Беларусь .
- •Вопрос 60. Причины и последствия демографического взрыва . Демографическая политика.
- •Вопрос 64. Мероприятия по охране растительного и животного мира Беларуси . Красная книга.
- •Вопрос 66. Естественные и искусственные источники электромагнитного излучения . Их влияние на организм человека . Мероприятия по охране от эми.
- •Вопрос 67. Законодательство рб по охране природы . Экологические права и обязанности граждан рб.
- •Вопрос 73. Возможности малой и нетрадиционной энергетики в рб.
- •Вопрос 74. Вторичные энергоресурсы , их классификация и значение в экономике топлива.
- •Вопрос 77. Экономия энергетических ресурсов в быту .
- •Вопрос 79. Основные формы трудовой деятельности человека.
- •Вопрос 85. Классификация несчастных случаев , связанных с трудовой деятельностью человека.
- •Вопрос 89. Механизмы минимизации профессиональных рисков.
- •Вопрос 90. Приоритетные направления Республиканской целевой программы по улучшению условий и охраны труда на 2011-2015 годы.
Вопрос 33. Основные способы обнаружения ионизирующих излучений.
Обнаружение ионизирующих излучений основывается на их способности ионизировать и возбуждать атомы и молекулы среды, в которой они распространяются. Такие процессы изменяют физико-химические свойства облучаемой среды, которые могут быть обнаружены и измерены.
К таким изменениям среды относятся:
изменение электропроводности веществ (газов, жидкостей, твердых материалов);
люминесценция (свечение) некоторых веществ;
засвечивание фотопленок;
изменение цвета, окраски, прозрачности, сопротивления электрическому току некоторых химических растворов и др
Взяв за основу эти явления, для регистрации и измерения ионизирующих излучений используют фотографический, химический, сцинтилляционный и ионизационный методы.
Фотографический метод основан на измерении степени почернения фотоэмульсии под воздействием радиоактивных излучений. Гамма-лучи, воздействуя на молекулы бромистого серебра, содержащегося в фотоэмульсии, выбивают из них электроны связи. При этом образуются мельчайшие кристаллики серебра, которые и вызывают почернение фотопленки при ее проявлении.
Химический метод основан на определении изменений цвета некоторых химических веществ под воздействием радиоактивных излучений. Так, например, хлороформ при облучении распадается с образованием соляной кислоты, которая, накопившись в определенном количестве, воздействует на индикатор, добавленный к хлороформу. Интенсивность окрашивания индикатора зависит от количества соляной кислоты, образовавшейся под воздействием радиоактивного излучения, а количество образовавшейся соляной кислоты пропорционально дозе радиоактивного облучения. Сравнивая окраску раствора с имеющимися эталонами, можно определить дозу радиоактивных излучений, воздействовавших на раствор. На этом методе основан принцип работы химического дозиметра ДП-70 мп
Сцинтилляционный метод основан на том, что под воздействием радиоактивных излучений некоторые вещества (сернистый цинк, йодистый натрий, вольфрамат кальция и др.) испускают фотоны видимого света. Возникшие при этом вспышки света (сцинтилляции) могут быть зарегистрированы. Количество вспышек пропорционально интенсивности излучения.
Ионизационный метод основан на том, что под воздействием радиоактивных излучений в изолированном объеме происходит ионизация газов. При этом нейтральные молекулы и атомы газа разделяются на пары: положительные ионы и электроны. Если в облучаемом объеме создать электрическое поле, то под воздействием сил электрического поля электроны, имеющие отрицательный заряд, будут перемещаться к аноду, а положительно заряженные ионы - к катоду, т.е. между электродами будет проходить электрический ток, называемый ионизационным током. Чем больше интенсивность, а следовательно, и ионизирующая способность радиоактивных излучений, тем выше сила ионизационного тока. Это дает возможность, измеряя силу ионизационного тока, определять интенсивность радиоактивных излучений.
Вопрос 34. Принципы устройства и работы дозиметрических приборов.
Дози́метр — прибор который измеряет эффективную дозу или мощность ионизирующего излучения за какой-то промежуток времени. Само измерение называется дозиметрией.
Чувствительный элемент устройства заполняется аргоном и к нему подается напряжение с двух электродов, при этом максимально устраняются все возможности появления скачков напряжения. При прохождении бета-частиц через камеру датчика, заполненную аргоном под напряжением, газ начинает ионизироваться, что приводит к увеличению токопроводящих способностей аргона, в результате возникает электрический разряд, что снижает напряжение на электродах вплоть до нулевого значения. После чего камера быстро восстанавливается, напряжение снова достигает номинального уровня, и датчик уже готов к регистрации и приему новой бета-частицы. Подобные скачки регистрирует специальная микропроцессорная плата, которая и превращает их в цифровые показатели. Причем полученное значение при измерении может быть задано на указанный вами промежуток времени, к примеру, одна секунда или одна минута.
При регистрации гамма-излучения или рентгеновских лучей все происходит по похожему принципу. Единственным отличием является тот факт, что возникновение разряда тока в чувствительном элементе устройства возникает из-за того, что гамма или рентгеновские фотоны выбивают электроны из специальной пленки на поверхности датчика.
Уровень эффективной дозы и мощность ионизирующего излучения в заданном промежутке времени, регистрируется и определяется за счет последовательного подсчета каждого такого импульса, а, следовательно, и каждой пройденной частицы через датчик. Все эти данные обрабатываются электронной схемой и попадают на жидкокристаллический монитор устройства.
