- •32. Воздушные водоподъемники
- •33. Насосные станции для забора подземных вод.
- •34. Высота всасывания насосов. Допустимое значение высоты всасывания.
- •35. Воздуходувки. Конструкции, область применения.
- •36. Оросительные насосные станции.
- •37. Меры борьбы с явлением кавитации.
- •38. Водокольцевые насосы.
- •47.Скважинные насосы
- •48.Регулирование работы воздуходувных станций.
- •49. Рабочие поля характеристик насоса
- •50.Центробежный многоступенчатый насосы
- •54.Центробежные вертикальные насосы.
- •51. Водопроводные насосные станции 1 подъема
- •52.Испытание насосов
- •55.Характеристики лопастного насоса.
- •56. Центробежные насосы 2-ух сторонним входом жидкости.
- •58. Полный напор, подача, мощность, кпд насоса
- •59. Конструкция центроб. Насоса консольного типа.
- •57. Всасывающие и напорные трубопроводы водопроводных насосных станций
- •61,77. Обточка рабочего колеса ц/б насоса
- •62.Способы уменьшения неравномерности подачи пор-ых насосов.
- •64.Совместная работа насосов и водоводов. Режимные точки
- •63. Схема расположения насосных агрегатов и определение основных размеров здания нс
- •65.Схемы устройства и принцип действия струйных насосов и водоподъемников
- •82. Многоступенчатые насосы
- •67.Передвижные насосные станции.
- •69.Схемы устройства и принцип действия объемныхх насосов
- •70.Надежность оборудования насосных станций и мероприятий по ее повышению
- •71.Определение допустимой отметки установки оси насоса
- •73.Повысительные насосные станции
- •72.Схема устройства и принцип действия ц/б насосов
- •75.Явление кавитации
- •76.Станции подкачки
- •78.Категории надежности водопроводных насосных станций
- •79.Циркуляционные насосные станции
- •80 Схема и график подачи поршневого насоса трехстороннего действия
- •81.Полный кпд лопастного насоса
- •84.Параллельная работа насосов с нестабильной характеристикой
- •85. Тип здания насосной станции
- •87.Насосы для перекачки агрессивных жидкостей
- •88.Определение полного напора кнс
- •90.Определение мощности приводного электродвигателя
- •Вопрос 91.Подбор сороудерживающий решеток
- •1.Водозаборы водопроводных насосных станций
- •6. Повысительные насосные станции
- •3.Приемные резервуары канализационных насосных станций
- •5.Схема устройства и принцип действия центробежны насосов
- •4. Сводный график рабочих полей насоса
- •9. Специальные типы канализационных станций (ливневые, иловые)
- •46.Последовательная работа насосов
- •45.Осушительные насосные станции
- •11 Схема и график подачи поршневого насоса одностороннего действия
- •12. Динамические насосы для сточных вод
- •13. Формулы пересчета основных характеристик подобных рабочих колес лопасных насосов
- •14. Схема и график подачи поршневого насоса двустороннего действия
- •15. Аккумулирующая емкость насосной станции(назначение, опред. Объема)
- •16. Понятия: насос, насосный агрегат, насосная установка, насосная станция
- •17. Компрессоры. Схема и принцип работы
- •18.Выбор основного оборудования насосных станций.
- •19.Мощность и кпд насоса и насосной установки
- •20.Поршневые и плунжерные насосы
- •21.Классификация насосных станций
- •22.Параллельная работа насосов
- •23.Шнековые и вибрационные насосы
- •24.Выбор типа и числа основных и резервных насосов
- •25. Классификация насосов.
- •26. Вихревые и струйные насосы.
- •27.Водопроводные стации второго подъема
- •28.Принцип действия объемных насосов. Графики подачи поршневых насосов
- •29.Насосы, применимые при производстве строительных работ
- •30.Типы и конструкции насосных станций
- •39. Канализационные насосные станции
- •40.Коэффициент быстроходности лопастных насосов
- •41.Насосы для перекачки сточных вод.
- •42.Принципиальные схемы насосных станций.
- •42.Принципиальные схемы насосных станций.
- •43.Изменение хар-и насоса при изменении частоты вращения рабочего колеса
- •44.Осевые и диагональные насосы
- •2.Энергетические характеристики центробежного насоса. Оптимальная режимная точка
- •7. Определение требуемой мощности насоса, приводного двигателя и сети
- •8.Критерии подобия лопастных насосов
- •10. Параллелограммы скоростей потока в рабочем колесе центробежного насоса
- •32.Воздушные водоподъемники
- •33.Насосные станции для забора подземных вод
81.Полный кпд лопастного насоса
Полезная мощность лопастного насоса равна
Nn = H • g • ρ • Q
где H - действительный напор;
Q - действительная подача лопастного насоса Мощность, потребляемая лопастным насосом, включает потери мощности в насосе и зависит, в частности от КПД насоса η:
Потери мощности в лопастном насосе слагаются из механических потерь, потерь на дисковое трение, объемных и гидравлических потерь.
КПД лопастного насоса
Таким образом, КПД лопастного насоса равен произведению четырех КПД, соответствующих указанным потерям:
η = ηМ •ηД • ηО • ηГ.
Механические потери мощности происходят в местах трения - в опорах (радиальных и осевых), у ступиц рабочих колес, в уплотнениях насоса и зависят от конкретной конструкции, типоразмера и качества изготовления узла, в котором происходит трение. Механический KПД лопастных насосов изменяется в пределах ηМ = 0,9...0,98.
Потери мощности на дисковое трение происходят в результате взаимодействия потока жидкости с внешними поверхностями дисков рабочих колес, а также разгрузочной пяты. Дисковый КПД лопастных насосов изменяется в пределах ηД = 0,85...0,95.
Объемные потери мощности обусловлены утечками через уплотнения рабочего колеса в уплотнениях вала насоса, в разгрузочной пяте и т.д. О величине объемного КПД было сказано выше.
Гидравлические потери мощности происходят в результате преодоления сопротивлений в подводе, рабочем колесе и отводе при движении жидкости через насос. Гидравлический КПД лопастных насосов изменяется в пределах ηГ = 0,7...0,95.
КПД лопастных насосов, с учетом рассмотренных выше механического, дискового, объемного и гидравлического КПД изменяется в пределах η = 0,45...0,86. Максимальное значение КПД достигает 0,89 у наиболее мощных нефтяных центробежных магистральных насосов.
В зависимости от изменения величин множителей изменяется и величина общего КПД насоса. Обычно изменение общего КПД изображают кривой η = f(Q) в характеристике центробежного насоса.
84.Параллельная работа насосов с нестабильной характеристикой
Насосы с разными характеристиками могут параллельно работать только при определенных условиях, в зависимости от соотношения характеристик этих насосов.
Проанализировать возможность и целесообразность параллельной работы насосов с разными характеристиками можно, совмещая характеристики насосов и системы. На рис. 3.11,6 показаны характеристики насосов I и II. Как видно из рисунка, насос II развивает меньший напор, чем насос I. Поэтому насос II может работать параллельно с насосом I, только начиная с точки, где развиваемые ими напоры равны (точка С на рис. 3.11,6). Характеристика совместной работы насосов (суммарная характеристика), начиная с точки С, строится путем сложения абсцисс характеристик насосов I и II при одинаковых ординатах (напорах, развиваемых насосами).
Для определения суммарной подачи необходимо построить характеристику системы (кривая РЕ на рис. 3.11,6). Затем из точки А — точки пересечения характеристики системы с суммарной характеристикой совместной работы насосов I и II следует провести линию, параллельную оси ординат, которая отсечет на оси абсцисс отрезок, соответствующий расходу Qi+i1, подаваемому в систему обоими насосами. Подачу каждого из совместно работающих насосов можно найти, проведя из точки А прямую, параллельную оси абсцисс. Пересечение этой прямой с характеристиками насосов I и II дает соответствующие точкам 1' и 2' величины подачи Q'i
Как и в случае параллельной работы двух насосов с одинаковыми характеристиками, суммарная подача двух насосов меньше суммы подач каждого из насосов в отдельности. Из рис. 3.11,6 видно, что QI+QI >QI+II. Мощность и КПД совместно работающих насосов определяются так же, как и в случае совместной параллельной работы двух насосов с одинаковыми характеристиками.
Принцип построения характеристики параллельной работы разных насосов применяют и для построения характеристики параллельной работы нескольких одинаковых насосов, когда подачу одного из них регулируют изменением частоты вращения.
В практике работы водопроводных систем встречаются случаи, когда в параллельную работу вступают насосы, расположенные на значительном расстоянии друг от друга. Простейший пример такой параллельной работы насосов представлен на рис. 3.12. Для того чтобы правильно оценить параллельную работу насосов в этом случае, необходимо привести их характеристики к одной точке (точке а на рис. 3.12). Пренебрегая потерями на участке от насоса 2 до точки а, можно предположить, что характеристика насоса 2 в этой точке тождественна его заводской характеристике.
Для приведения характеристики насоса 1 к точке а необходимо построить его дроссельную или приведенную характеристику относительно оси этой точки, т. е. вычесть из ординат заводской характеристики насоса потери напора на участке от насоса 1 до точки а. Эта характеристика представлена кривой (Q—H)1a на рис.
При построении характеристики совместной работы насосов 1 и 2 [кривая (Q—H)1a+2] необходимо суммировать абсциссы кривых (Q—H)1a и (Q—H)2 при одинаковых напорах, т. е. сложить характеристики насосов, приведенные к одной точке (в данном случае к точке а). При этом характеристика системы (кривая Р—А) строится для участка а—б трубопровода.
По такому же принципу можно построить характеристики трех и более насосов, расположенных на значительных расстояниях один от другого и подающих жидкость в один общий напорный трубопровод.
Если в точках 1 и 2 расположены не отдельные насосы, а насосные станции с несколькими насосами, то характеристика совместной работы этих насосных станций строится таким же способом, только вместо характеристик Q — Н насоса принимают характеристики параллельно работающих насосов соответственно в точках 1 и 2. Таким образом можно получить характеристику совместной работы двух и более насосных станций, работающих в одной системе.
А) с одинаковыми характеристиками Б) с разными
