- •Понятие об измерениях .Виды и методы измерений. Средства измерений, параметры
- •3.2. Виды измерений
- •3.3. Средства измерений
- •4.Температура.Температурные шкалы и способы их построения.Реперные точки мтш-90
- •А) Методы измерения температуры
- •Б) Температурные шкалы
- •В) Классификация приборов для измерения температуры
- •6.Дилатометрические и биметаллические термометры
- •8.Термоэлектрические термометры
- •9.Термометры сопротивления
- •Платиновые термометры сопротивления
- •10.Пирометры
- •Принцип работы пирометра
- •11. Виды давлений.Манометры
- •12.Сужающиеся устройства
- •Стандартные сужающие устройства
- •13.Ротаметры.Тахометрические расходамеры
- •14.Измерение уровня жидкости
- •15. Измерение уровня сыпучих материалов.
6.Дилатометрические и биметаллические термометры
|
|
Принцип действия дилатометрических и биметаллических термометров основан на различии линейного расширения твердых тел, из которых изготовлены чувствительные элементы этих термометров. Если температурный интервал невелик, то зависимость длины твердого тела от температуры выражается линейным уравнением вида
где
—
длина твердого тела при температуре
,
м;
—
длина того же тела при температуре
;
—
температурный коэффициент линейного
расширения твердого тела,
Схема дилатометрического термометра представлена на рис. 60. Термометр состоит из трубки /, изготовленной из металла с большим коэффициентом линейного расширения (меди, латуни, алюминия), и стержня 2 из материала с малым коэффициентом линейного расширения (инвара, фарфора). Один конец трубки крепится неподвижно к корпусу прибора, а к другому жестко прикреплен стержень. Сама трубка помещается в среду, температуру которой измеряют. Изменение температуры среды приводит к изменению длины трубки, а длина стержня остается практически постоянной. Это приводит к перемещению стержня, который с помощью рычага 3 перемещает стрелку по шкале прибора.
Принцип действия биметаллических термометров основан на различии температурных коэффициентов линейного расширения металлических пластин (например, из инвара и латуни, из инвара и стали), сваренных (спаянных, склепанных) между собой по всей плоскости соприкосновения. Нагревание приводит к деформации такойтермобиметаллической пластины; последняя изгибается в сторону металла с меньшим коэффициентом линейного расширения (инвара) (рис. 61). Биметаллические термометры используются в качестве чувствительного элемента в температурных реле, а также для компенсации влияния температуры окружающей среды в измерительных приборах. Дилатометрические и биметаллические термометры для непосредственных измерений температуры применяются сравнительно редко.
Рис. 60. Схема дилатометрического термометра.
Рис.
61. Схема биметаллического термометра.
7. Термометр манометрический - прибор для измерения температуры, действие которого основано на зависимости давления рабочего вещества в замкнутом объеме от температуры. В зависимости от рабочего вещества различают газовые, жидкостные и конденсационные термометры.
Конструктивно манометрические термометры представляют собой герметичную систему, состоящую из баллона, соединённого капилляром с манометром. Термобаллон погружается в измеряемую среду. При изменении температуры рабочего вещества в термобалоне происходит изменение давления во всей замкнутой системе, которое через капиллярную трубку передается на манометр. В зависимости от назначения манометрические термометры бывают показывающими, самопишущими, а также состоящими только из первичного преобразователя давления для дистанционной передачи сигнала. Часто к манометрическим термометрам подключают устройства управления и сигнализации.
Капилляр манометрического термометра обычно представляет собой латунную трубку с внутренним диаметром в доли миллиметра. Это позволяет удалить манометр от места установки термобаллона на расстояние до 60 м. Манометрические термометры могут применяться во взрывоопасных помещениях. При необходимости передачи результатов измерений на большое расстояние манометрические термометры снабжают промежуточными преобразователями с унифицированными выходными пневматическими или электрическими сигналами. Наиболее уязвимыми в конструкции манометрических термометров являются места присоёдинения капилляра к термобаллону и манометру. Поэтому устанавливать и обслуживать такие приборы должны специально обученные специалисты. Нельзя нагревать манометрический термометр выше предельной температуры, на которую он рассчитан.
Диапазон измерений манометрического термометра зависит от типа термометра и рабочего вещества. Диапазон должен быть установлен в ТУ на термометры конкретного типа.
Газовые манометрические термометры заполняются азотом или гелием. Диапазон измерения температур может составлять от -200 до +800°С (ГОСТ 16920-93). Шкала равномерная. На показания газовых манометрических термометров оказывает влияние температура капиллярной трубки, если она отличается от температуры термобаллона. Для уменьшения, этой погрешности термометрический баллон имеет объем, во много раз превышающий объем капиллярной трубки. Устранение погрешности достигается применением специальных компенсирующих устройств. Жидкостные манометрические термометры заполняются ртутью, толуолом, ксилолом, метиловым или пропиловым спиртом. Диапазон измерения температур для жидкостных термометров составляет от -150 до 400 °С. Благодаря большой теплопроводности жидкости, такие термометры менее инерционны по сравнению с газовыми. Шкалы ртутных и спиртовых термометров равномерные, шкала термометра, заполненного ксилолом, не равномерная в диапазоне температур выше 120 °С. Принцип работы конденсационных манометрических термометров основан на зависимости давления насыщенного пара от температуры. В конденсационных манометрических термометрах применяются легкокипящие жидкости пропан, хлористый этил, этиловый эфир, ацетон, бензол и т.д. Конденсационные манометрические термометры обладают высокой чувствительностью. Шкалы термометров не равномерны в связи с нелинейной зависимостью давления насыщенного пара от температуры. Диапазон измерения температур составляет от -50 до +300 °С.
Особенностью манометрических термометров является довольно большая тепловая инерционность. Показатель тепловой инерции в неподвижной газовой среде составляет 500-800 с, в жидкой среде 15-30 с. Инерционность зависит от размера баллона и его заполнения.
