- •1.Понятие статистики, ее основные понятия и категории. Предмет статистической науки.
- •2.Статистическая методология и ее использование в изучении социально-экономических явлений.
- •3.Основные этапы статистического исследования, их краткая характеристика.
- •4.Задачи статистики на современном этапе.
- •Организация статистики в Республике Беларусь
- •6 Статистическое наблюдение – первая стадия статистического исследования. Требования, предъявляемые к фактам, полученным в процессе наблюдения
- •8 Виды статистического наблюдения, их характеристика.
- •9 Способы собирания статистических данных.
- •10 Программно-методологические вопросы плана статистического наблюдения, их краткая характеристика.
- •11 Организационные вопросы плана статистического наблюдения, их краткая характеристика.
- •12 Статистическая отчетность, принципы ее организации, программа и виды.
- •13 Переписи и другие виды специально организованных статистических наблюдений.
- •14 Возможные ошибки статистического наблюдения. Методы контроля достоверности статистических данных.
- •15 Сводка - вторая стадия статистического исследования, ее программа, план, организация и техника
- •16. Статистические группировки, их задачи и виды
- •17 Методология построения типологических, структурных к аналитическим группировкам.
- •18 Важнейшие группировки и классификации, применяемые в статистике.
- •19 Ряды распределения, их виды, краткая характеристика.
- •20 Правила образования групп и интервалов при построении интервальных вариационных рядов. Порядок определения конкретного значения признака (вариант)
- •21 Статистические таблицы, их виды, правила построения и оформления.
- •22 Абсолютные величины, их виды, единицы измерения и способы получения.
- •23 Относительные величины, общий подход к их расчету и формы выражения.
- •24 Виды относительных величин, порядок расчета и область применения.
- •25 Понятие и значение средних величин. Основные научные положения теории средних.
- •26 Средняя арифметическая, ее основные математические свойства.
- •27 Методы расчета средней арифметической упрощенным способом
- •28 29 Средняя гармоническая и обусловленность ее выбора
- •30 Мода и медиана, их смысл и значение в социально-экономических исследованиях, способы вычисления
- •31. Понятие и необходимость статистического изучения вариации признака. Показатели вариации, порядок их расчета.
- •32. Дисперсия, ее основные математические свойства.
- •33. Способы расчета дисперсии
- •34. Дисперсия альтернативного признака (вывод формулы).
- •35. Виды дисперсий и правило их сложения.
- •37. Понятие выборочного наблюдения, условия и принципы его организации.
- •38. Классификация ошибок выборочного наблюдения.
- •39. Теоретические основы выборочного наблюдения.
- •40. Порядок расчета ошибок выборки среднего значения признака и доли при собственно-случайном повторном и бесповторном отборах.
- •41. Определение необходимой численности (объема) выборки.
- •42. Способы распространения результатов выборочного наблюдения на генеральную совокупность. Практика применения выборочных исследований в статистике.
- •43. Понятие о рядах динамики, их виды и правила построения.
- •44. Аналитические показатели динамического ряда, способы их расчета и взаимосвязь.
- •45. Средние показатели динамического ряда и методы их расчёта.
- •46. Понятие тенденции ряда динамики и основные методы ее выявления (укрупнение интервалов, способ скользящей средней).
- •47. Аналитическое выравнивание уровней ряда динамики. Уравнение тренда. Понятие о интерполяции и экстраполяции.
- •48. Сезонные колебания и методы их изучения.
- •49. Сущность индексов и задачи, решаемые индексным методом. Классификация индексов.
- •50. Индивид-ые и общие (сводные индексы). Веса индексов, порядок их выбора.
- •51. Формы сводного индекса. Агрегатный индекс как исходная форма сводного индекса.
- •52. Средние индексы и их виды, порядок вычисления.
- •53. Индексный метод анализа динамики среднего уровня (индексы переменного, постоянного состава и структурных сдвигов).
- •54. Ряды индексов с постоянной и переменной базой сравнения, с постоянными и переменными весами, их взаимосвязь.
- •55. Взаимосвязи индексов.
- •56. Принципы построения и порядок решения многофакторных индексных моделей.
- •57.Территориальные индексы
- •58. Измерение связей между социально-экономическими явлениями – важнейшая задача статистики. Формы и виды взаимосвязей.
- •59. Статистические методы изучения связей: метод сравнения параллельных рядов, метод аналитических группировок, графический метод, балансовый метод.
- •60. Понятие прямолинейной корреляции. Нахождение параметров уравнения регрессии, оценка тесноты связи при прямолинейной зависимости.
- •61. Понятие криволинейной зависимости. Оценка тесноты связи при криволинейной зависимости.
39. Теоретические основы выборочного наблюдения.
Теоретическими основами выборочного наблюдения выступают теоремы, разработанные математиками Марковым, Бирнули, Чебышевым, Ляпуновым. Неравенство Чебышева: при достаточно большом объеме выборки разность между показателями выборки и генеральной совокупности не превзойдет предельную ошибку выборки, которая может быть доведена до малых размеров. Это гарантируется с вероятностью близкой единице.
Теорема Чебышева:
С вероятностью сколь угодно близкой к единице можно утверждать, что разность между выборочной и генеральными показателями есть величина малая.
Ляпунов уточнил теорему Чебышева и доказал, что для данной теоремы эта вероятность = интегралу Лапласа или функции от t p=ф(t)
Согласно решению интеграла Лапласа подготовлены спец таблицы, в которых приведены значения коэффициента доверия и вероятности ему соответствующие
t=1 p=0,683
t=2 p=0,952
t=3 p=0,997
Ляпунов доказал теорему, которая позволяет найти возможные пределы, в которых заключены показатели по генеральной совокупности.
Теорема Ляпунова:
С вероятность = ф(t) можно утверждать, что разность между показателями выборочной и генеральной совокупностей находится в границах предельной ошибки выборки.
для средней
для доли
p=W
p
верх предел = W+
W
p нижн предел = W- W
40. Порядок расчета ошибок выборки среднего значения признака и доли при собственно-случайном повторном и бесповторном отборах.
Собственно-случайная выборка организуется методом жеребьевки. Жеребьевка – это на каждую единицу генеральной совокупности заготавливается жребий, после чего все жребии опускаются в урну, перемешиваются, затем извлекают столько жребиев, сколько единиц совокупности подлежит обследованию. Сам отбор может быть повторным и бесповторным. Повторный отбор – жребий, попавший в выборку, фиксируется, после чего возвращается в урну. Отбор каждой последующей единицы производится из совокупности одного и того же объема.
средняя
ошибка выборки при повторном отборе
для средней
=
ошибка доли
предельная
ошибка выборки средней
предельная
ошибка выборки доли
При
бесповторном отборе жребий попавший в
выборку фиксируется и в урну не
возвращается. Поэтому отбор каждой
последующей единицы для обследования
производится из совокупности на единицу
меньше прежней. В формулу ошибки выборки
вводится дополнительный множитель
средняя
ошибка
ошибка
доли
предельная
ошибка выборки средней
предельная
ошибка выборки доли
41. Определение необходимой численности (объема) выборки.
Одним из научных принципов в теории выборочного метода является обеспечение достаточного числа отобранных единиц.
Уменьшение стандартной ошибки выборки всегда связано с увеличением объема выборки. Для случайного повторного объема выборки (n) имеем:
откуда
При случайном повторном отборе необходимой численности объем выборки прямо пропорционален квадрату коэффициента доверия и дисперсии вариационного признака и обратно пропорционален квадрату предельной ошибки выборки. В частности, с увеличением предельной ошибки в 2 раза необходимая численность выборки может быть уменьшена в 4 раза. Из трех параметров два (коэффициент доверия и предельная ошибка выборке) задаются исследователем. При этом исследователь исходя из цели и задач выборочного обследования должен решить вопрос, в каком количественном сочетании лучше включить эти параметры для обеспечения оптимального варианта. В одном случае его может устраивать в большей мере надежность полученных результатов (t), нежели мера точности ( Д ), в другом – наоборот. Сложнее решить вопрос в отношении величины предельной ошибки выборки, так как этим показателем исследователь на стадии проектировки выборочного наблюдения не располагает. В практике принято задавать величину предельной ошибки выборки в пределах до 10% предполагаемого среднего уровня признака. К установлению предполагаемого среднего уровня можно подходить по-разному: использовать данные подобных ранее проведенных об–следований или же воспользоваться данными основы выборки и произвести небольшую пробную выборку.
При проектировании выборочного наблюдения предполагаются заранее заданная величина допустимой ошибки выборки в соответствии с задачами конкретного исследования и вероятность выводов по результатам наблюдения.
В целом формула предельной ошибки выборочной средней позволяет решать следующие задачи:
1) определять величину возможных отклонений показателей генеральной совокупности от показателей выборочной совокупности;
2) определять необходимую численность выборки, обеспечивающую требуемую точность, при которой пределы возможной ошибки не превысят некоторой, наперед заданной величины;
3) определять вероятность того, что в проведенной выборке ошибка будет иметь заданный предел.
