Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Когерентность и монохроматичность световых волн...docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
691.94 Кб
Скачать

Интерференция при отражении от плоскопараллельной пластинки

Интерференционная картина в плоскопараллельных пластинках (пленках) определяется величинами . Для данных каждому наклону i лучей соответствует своя интерференционная полоса.

Интерференционные полосы, возникающие в результате наложения лучей падающих на плоскопараллельную пластинку под одинаковыми углами, называются полосами равного наклона. Лучи 1’ и 1”, отразившиеся от верхней и нижней граней пластинки, параллельные друг другу, так как пластинка плоскопараллельна. Следовательно, интерферирующие лучи 1’ и 1” «пересекаются» только в бесконечности. Для их наблюдения используют собирающую линзу и экран (Э), расположенный в фокальной плоскости линзы. Параллельные лучи 1’ и 1” соберутся в фокусе F линзы , в эту же точку придут и другие лучи, параллельные лучу 1, в результате чего увеличивается общая интенсивность. Лучи 3, наклоненные под другим углом , соберутся в другой точке Р фокальной плоскости линзы. Если оптическая ось линзы перпендикулярна поверхности пластинки, полосы равного наклона будут иметь вид концентрических колец с центром в фокусе линзы.

Просветление оптики

Объективы фотоаппаратов и кинопроекторов, перископы под­водных лодок и другие оптические устройства состоят из большого числа оптических стекол, линз, призм. Каждая отполиро­ванная поверхность стекла отражает около 5% падающего на нее света. Чтобы уменьшить долю отражаемой энергии, исполь­зуется явление интерференции света.

На поверхность оптическо­го стекла наносят тонкую пленку. Для того чтобы волны 1 и 2 ослабляли друг друга, должно выполняться условие минимума. В отраженном свете разность хода волн равна:   . Потеря полуволны происходит при отражении как от пленки, так и от стекла (показатель преломления стекла больше, чем пленки), поэтому, эту потерю можно не учитывать. Следо­вательно,  , где n - показатель преломления пленки; h — толщина пленки. Минимальная толщина пленки будет при k=0. Поэтому  . При равенстве амплитуд гашение света будет полным. Толщину пленки подбирают так, чтобы пол­ное гашение при нормальном падении имело место для длин волн средней части спектра (для зеленого цвета): 

.

Чтобы рассчитать толщину пленки в этой формуле необходимо взять длину волны и показатель преломления зеленого света.

Лучи красного и фиолетового цвета ослабляются незначительно.поэтому объективы оптических приборов в отраженном свете имеют сиреневые оттенки

Интерференция на клине

Две поверхности, расположение под малым углом α, образуют систему получившую название клин. Клин имеет разную толщину, а поэтому при освещении поверхности клина монохроматическим светом на поверхности клина будут наблюдаться интерференционные максимумы и минимумы (смотри интерференцию на плёнке), т.к. в одних точках поверхности толщина клина соответствует условию наблюдению максимума, а в других – условию минимума.

Определим ширину интерференционной полосы.

Пусть в точке А поверхности клина возникает максимум m-ого порядка. Толщина клина - dm+1. В точке В возникает максимум (m+1)-го порядка. Толщина плёнки в этом месте - dm+1. Условие наблюдения максимума при толщине dm и dm+1:

2dmn=(2m+1)λ/2; 2dm+1n=(2m+3) λ/2.

Вычтем из второго уравнения первое:

.

dm+1-dm – разность толщины клина в местах наблюдения m-ого и (m+1)-го максимумов. На рисунке 3. Из прямоугольника:

AB=Δy=BD/sinα,

Δy – ширина интерференционной полосы

.

Если угол при вершине мал, то  ,

, α[рад].

Ширина интерференционного минимума или расстояния между соседними минимумами равна ширине интерференционного максимума.

 Интерференционные кольца Ньютона

Яв ляются примером полос равной толщины. Роль тонкой пластинки играет воздушный зазор. Т.к. радиус линзы  , то вблизи точки касания можно пренебречь кривизной линзы. Тогда . Из треугольника (учитывая, что  ) следует:

.

Отсюда получаем толщину воздушного зазора   на радиусе  . Тогда  . Отсюда, используя условие максимума  , получаем радиусы светлых колец:  . Для темных колец - 

Дифракция Света

Дифракция – огибание светом препятствия, проникновение света в область геометрической тени.

Принцип Гюйгенса — Френеля

Принцип Гюйгенса — Френеля: Каждый элемент волнового фронта можно рассматривать как центр вторичного возмущения, порождающего вторичные сферические волны, а результирующее световое поле в каждой точке пространства будет определяться интерференцией этих волн.

Зоны Френеля

Зоны Френеля - участки, на которые можно разбить поверхность световой волны для вычисления результатов дифракции света.

Суть метода такова. Пусть от светящейся точки   распространяется сферическая волна и требуется определить характеристики волнового процесса, вызванного ею в точке  . Разделим поверхность волны   на кольцевые зоны. Для этого проведём из точки   сферы радиусами  , ,  (  — точка пересечения поверхности волны с линией  ). Кольцеобразные участки поверхности волны, «вырезаемые» из неё этими сферами, и называется зонами Френеля. Волновой процесс в точке   можно рассматривать как результат сложения колебаний, вызываемых в этой точке каждой зоной Френеля в отдельности.