Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курс лекций.docx
Скачиваний:
3
Добавлен:
01.07.2025
Размер:
4.23 Mб
Скачать

О пределение двойного интеграла

Понятие интеграла может быть расширено на функции двух и большего числа переменных. Рассмотрим, например, функцию двух переменных z = f (x,y). Двойной интеграл от функции f (x,y) обозначается как

где R - область интегрирования в плоскости Oxy. Если определенный интеграл

от функции одной переменной выражает площадь под кривой f (x) в интервале от x = a до x = b, то двойной интеграл выражает объем под поверхностью z = f (x,y) выше плоскости Oxy в области интегрирования R (рисунок 1).

Ч тобы определить двойной интеграл в произвольной области R, отличной от прямоугольной, выберем прямоугольник , покрывающий область R (рисунок 3), и введем функцию g (x,y), такую, что

Тогда двойной интеграл от функции f (x,y) в произвольной области R определяется как

Свойства двойного интеграла Двойной интеграл обладает следующими свойствами:

1)

2 )

3 ) , где k - константа;

4) Если в области R, то ;

5) Если в области R и (рисунок 4), то ; Рис.4

6 ) Если на R и области R и S являются непересекающимися (рисунок 5), то .

Рис.5

Здесь означает объединение этих двух областей.

Д войные интегралы в прямоугольной области . Пусть область интегрирования R представляет собой прямоугольник . Тогда двойной интеграл в такой области выражается через повторный интеграл в следующем виде:

Обычно удобнее начинать интегрировать функцию f (x,y). с более простого интеграла. В частном случае, когда подынтегральная функция f (x,y) "расщепляется" на произведение f (x)g(y), двойной интеграл равен произведению двух определенных интегралов:

Пример 1 Вычислить двойной интеграл в области .

Решение. Как видно, подынтегральная функция f (x,y) представляет собой произведение f (x)g(y). Следовательно, интеграл равен

Г еометрические приложения двойных интегралов

1 . Площадь плоской фигуры . Если f (x,y) = 1 в интеграле , то двойной интеграл равен площади области интегрирования R.

П лощадь области типа I (элементарной относительно оси Оy) (рисунок 1) выражается через повторный интеграл в виде

Аналогично, площадь области типа II (элементарной относительно оси Оx) (рисунок 2) описывается формулой

2. Объем тела

Если f (x,y) > 0 в области интегрирования R, то объем цилиндрического тела с основанием R, ограниченного сверху поверхностью z = f (x,y), выражается формулой

В случае, когда R является областью типа I, ограниченной линиями , объем тела равен

Для области R типа II, ограниченной графиками функций , объем соответственно равен

сли в области R выполняется неравенство , то объем цилиндрического тела между поверхностями z1 = f (x,y) и z2 = g (x,y) с основанием R равен

3 . Площадь поверхности Предположим, что поверхность задана функцией z = f (x,y), имеющей область определения R. Тогда площадь такой поверхности над областью z определяется формулой

при условии, что частные производные и непрерывны всюду в области R.